给定各个宝物的多个守卫点,求最少移走宝物个数。
假如某个宝物的守卫点位于另一个宝物的位置上,则两者只能选其一,于是连边,求二分图的最小顶点覆盖。(可证明图内无奇数环)
//#include <cmath>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <fstream>
#include <iostream>
#define rep(i, l, r) for(int i=l; i<=r; i++)
#define clr(x, c) memset(x, c, sizeof(x))
#define N 53
#define MAX 1<<30
#define ll long long
using namespace std;
int read()
{
int x=0, f=1; char ch=getchar();
while (ch<'0' || ch>'9') { if (ch=='-') f=-1; ch=getchar(); }
while (ch>='0' && ch<='9') { x=x*10+ch-'0'; ch=getchar(); }
return x*f;
}
const int dir[12][2] = {{-1,-2},{-2,-1},{-2,+1},{-1,+2},{+1,+2},{+2,+1},{+2,-1},{+1,-2},{-1,0},{0,+1},{+1,0},{0,-1}};
struct edge{int y1, y2, n;} e[N*N*N*N]; int fir[N][N], en;
int n, m, k1[N][N], k2[N][N], t, ans, map[N][N];
bool b[N][N];
void Add(int x1, int x2, int y1, int y2)
{
en++, e[en].y1=y1, e[en].y2=y2, e[en].n=fir[x1][x2], fir[x1][x2]=en;
en++, e[en].y1=x1, e[en].y2=x2, e[en].n=fir[y1][y2], fir[y1][y2]=en;
}
bool Can(int x, int y) { return x>0 && x<=n && y>0 && y<=m; }
bool Find(int x1, int x2)
{
int o=fir[x1][x2], y1=e[o].y1, y2=e[o].y2;
while (o)
{
if (!b[y1][y2])
{
b[y1][y2]=1;
if (!k1[y1][y2] || Find(k1[y1][y2], k2[y1][y2])) { k1[y1][y2]=x1; k2[y1][y2]=x2; return true; }
}
o=e[o].n, y1=e[o].y1, y2=e[o].y2;
}
return false;
}
int main()
{
while(scanf("%d %d", &n, &m) && (n || m))
{
t++; clr(fir, 0); en=ans=0;
rep(i, 1, n) rep(j, 1, m) map[i][j]=read();
rep(i, 1, n) rep(j, 1, m)
{
int a=map[i][j]; if (a<0) continue;
rep(o, 0, 11)
{
if (a%2 && Can(i+dir[o][0], j+dir[o][1]) && map[i+dir[o][0]][j+dir[o][1]]>=0)
Add(i, j, i+dir[o][0], j+dir[o][1]);
a/=2;
}
}
clr(k1, 0); clr(k2, 0);
rep(i, 1, n) rep(j, 1, m) if ((i+j)%2)
{
clr(b, 0); if (Find(i, j)) ans++;
}
printf("%d. %d\n", t, ans);
}
return 0;
}