二分匹配求最小点覆盖
因为宝藏防止保安的位置在与其奇偶性不同的位置,所以分奇偶建图,如果同时存在宝藏就必定有一点为保安
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <cctype>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>
#define INF (int)(1e9)
#define maxn 5010
using namespace std;
typedef long long ll;
int p = 0;
struct node {
int to, w, next;
};
node edge[maxn * maxn];
int head[maxn];
void add_edge(int u, int v, int w) {
edge[p].to = v;
edge[p].w = w;
edge[p].next = head[u];
head[u] = p;
++ p;
}
int Mx[maxn],My[maxn],uN,vN;
int dx[maxn],dy[maxn],dis;
bool vis[maxn];
bool search_path() {
queue<int> Q;
dis = INF;
memset(dx, -1, sizeof(dx));
memset(dy, -1, sizeof(dy));
for (int i = 0; i < uN; i++)
if(Mx[i] == -1) {
Q.push(i);
dx[i] = 0;
}
while (!Q.empty()) {
int u = Q.front();
Q.pop();
if (dx[u] > dis) break;
int v;
for (int k = head[u]; k != -1; k = edge[k].next) {
v = edge[k].to;
if (dy[v] == -1) {
dy[v] = dx[u] + 1;
if (My[v] == -1) dis = dy[v];
else {
dx[My[v]] = dy[v]+1;
Q.push(My[v]);
}
}
}
}
return dis != INF;
}
bool dfs(int u) {
int v;
for (int k = head[u]; k != -1; k = edge[k].next) {
v = edge[k].to;
if (!vis[v] && dy[v]==dx[u]+1) {
vis[v] = 1;
if (My[v] != -1 && dy[v] == dis) continue;
if(My[v] == -1 || dfs(My[v])) {
My[v] = u;
Mx[u] = v;
return true;
}
}
}
return false;
}
int max_match() {
int res = 0;
memset(Mx, -1, sizeof(Mx));
memset(My, -1, sizeof(My));
while (search_path()) {
memset(vis, 0, sizeof(vis));
for (int i = 0; i < uN; i ++)
if (Mx[i] == -1 && dfs(i)) res ++;
}
return res;
}
int mat[maxn][maxn];
int dir[12][2] = {-1, -2, -2, -1, -2, 1, -1, 2, 1, 2, 2, 1, 2, -1, 1, -2, -1, 0, 0, 1, 1, 0, 0, -1};
int even[maxn], odd[maxn];
int main() {
int n, m, now = 0;
while (scanf("%d%d", &n, &m) != EOF) {
memset(head, -1, sizeof(head)), p = 0;
if (n == 0 && m == 0) break;
int p1 = 0, p2 = 0;
for (int i = 0; i < n; ++ i) {
for (int j = 0; j < m; ++ j) {
scanf("%d", &mat[i][j]);
int tmp = i*m+j;
if ((i+j)%2) {
odd[tmp] = p1++;
}
else {
even[tmp] = p2++;
}
}
}
for (int i = 0; i < n; ++ i) {
for (int j = 0; j < m; ++ j) if (mat[i][j] != -1) {
int x = mat[i][j];
for (int k = 0; k < 12; ++ k, x >>= 1) if (x&1) {
int nx = i + dir[k][0];
int ny = j + dir[k][1];
int tmp = i*m+j;
if (mat[nx][ny] != -1 && nx >= 0 && nx < n && ny >= 0 && ny < m) {
if ((i+j)%2) {
add_edge(odd[tmp],even[nx*m+ny],0);
}
else {
add_edge(odd[nx*m+ny],even[tmp],0);
}
}
}
}
}
uN = p1, vN = p2;
printf("%d. ", ++ now);
cout << max_match() << endl;
}
}