Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
tag: 经典动态规划。
自顶向下, 空间复杂度 O(N^2)
顶底向上,空间复杂度O(N).
自顶向下
public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
if(triangle == null || triangle.size() == 0) {
return Integer.MAX_VALUE;
}
int size = triangle.size();
int[][] f = new int[size][size];
f[0][0] = triangle.get(0).get(0);
//initialize the diagonal
for(int i = 1; i < size; i++ ) {
f[i][i] = f[i - 1][i - 1] + triangle.get(i).get(i);
}
for(int i = 1 ; i < size; i++) {
f[i][0] = f[i - 1][0] + triangle.get(i).get(0);
}
for(int i = 1; i < size; i++){
for(int j = 1; j < i;j++) {
f[i][j] = triangle.get(i).get(j) + Math.min(f[i - 1][j - 1], f[i - 1][j]);
}
}
int min = f[size - 1][0];
for(int k = 1; k < size; k++) {
min = Math.min(min, f[size - 1][k]);
}
return min;
}
}
自底向上
public int minimumTotal(List<List<Integer>> triangle) {
int[] A = new int[triangle.size()+1];
for(int i=triangle.size()-1;i>=0;i--){
for(int j=0;j<triangle.get(i).size();j++){
A[j] = Math.min(A[j],A[j+1])+triangle.get(i).get(j);
}
}
return A[0];
}