求单模序列的顶点序号——算法描述与复杂度分析

本文介绍了一种针对单模序列查找顶点序号的方法。单模序列是一种特殊的数列,其中元素先增后减。文章提供了一个遍历算法来找到序列的顶点,并分析了该算法的时间复杂度为O(n)。

一、问题描述

  令A[1..n]是一个由n个数所组成的数组。序列A[1], A[2], … , A[n]被称为是单模的(unimodal),当且仅当存在顶点序号1≤p≤n,使得数组的元素从A[1]、A[2]开始到A[p]单调增加,而从A[p]、A[p+1]开始到A[n]则单调下降。对于一个给定的单模序列A[1], A[2], … , A[n],请找出其顶点序号p。设计一个求解此问题的算法并分析其最坏时间复杂性。

 

二、算法描述

  遍历数组A[1..n],若后一个数比前一个数大,则继续遍历,否则,停止遍历,输出结果

三、相应伪码

1 for (int i = 0 ; i < n - 1 ; i++){
2     if (A[i + 1] >= A[i]){
3         continue;
4     }
5     else{
6         return i;
7         break;
8     }
9 }

 

四、算法复杂度分析

  由单模序列的定义可知,最坏情况为从A[1]到A[n - 1]均为单调增加,从A[n - 1]到A[n]为单调下降。此时,需要比较 n - 2 次。故,最坏情况下算法复杂度为 O(n - 2)即O(n)。  

转载于:https://www.cnblogs.com/nipo/p/7658945.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值