Principal Component Analysis ---- PRML读书笔记

本文深入解析了主成分分析(PCA)的基本原理,介绍了如何通过计算数据集的平均值和协方差矩阵,找到对应最大特征值的特征向量,实现数据降维。PCA被定义为一种将数据正交投影到较低维度线性空间的方法,该空间称为主子空间,旨在最大化投影数据的方差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    To summarize, principal component analysis involves evaluating the mean x and the covariance matrix S 

of the data set and then finding the M eigenvectors of S corresponding to the M largest eigenvalues. If we

plan to project our data onto the first M principal compents, then we only need to find the first M eigenvalues

and eigenvectors.

    PCA can be defined as the orthogonal projection of the data onto a lower dimensional linear space, known as

the principal subspace, such that the variance of the projected data is maximized. Equivalently, it can be defined 

as the linear projection that minimizes the average projection cost, defined as the mean squared distance between

the data points and their projections.

    Consider a data set of observations {xn} where n = 1,...,N, and xn is a Euclidean variable with dimensionality D.

Our goal is to project the data onto a space having dimensionality M < D while maximizing the variance of the projected

data. 

    The general solution to the minimization of J for arbitrary D and arbitrary M < D is obtained by choosing the {ui} to be

eigenvectors of the covariance matrix given by Suiiui. where i=1,...,D, and as usual the eigenvectors {ui} are chosen to 

be orthonormal.

转载于:https://www.cnblogs.com/donggongdechen/p/9742726.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值