USACO 3.3.1 Riding the Fences 骑马修栅栏(欧拉回路)

本文介绍了一种解决农民John栅栏修复路径问题的算法,通过构建栅栏网络描述,利用深度优先搜索(DFS)或Fleury算法求解欧拉回路或通路,确保每个栅栏恰好被经过一次,输出最小500进制路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

农民John每年有很多栅栏要修理。他总是骑着马穿过每一个栅栏并修复它破损的地方。   John是一个与其他农民一样懒的人。他讨厌骑马,因此从来不两次经过一个一个栅栏。你必须编一个程序,读入栅栏网络的描述,并计算出一条修栅栏的路径,使每个栅栏都恰好被经过一次。John能从任何一个顶点(即两个栅栏的交点)开始骑马,在任意一个顶点结束。   每一个栅栏连接两个顶点,顶点用1到500标号(虽然有的农场并没有500个顶点)。一个顶点上可连接任意多(>=1)个栅栏。所有栅栏都是连通的(也就是你可以从任意一个栅栏到达另外的所有栅栏)。   你的程序必须输出骑马的路径(用路上依次经过的顶点号码表示)。我们如果把输出的路径看成是一个500进制的数,那么当存在多组解的情况下,输出500进制表示法中最小的一个 (也就是输出第一个数较小的,如果还有多组解,输出第二个数较小的,等等)。   输入数据保证至少有一个解。

Input

第1行: 一个整数F(1 <= F <= 1024),表示栅栏的数目 第2到F+1行: 每行两个整数i, j(1 <= i,j <= 500)表示这条栅栏连接i与j号顶点。

Output

输出应当有F+1行,每行一个整数,依次表示路径经过的顶点号。注意数据可能有多组解,但是只有上面题目要求的那一组解是认为正确的。

Sample Input

9
1 2
2 3
3 4
4 2
4 5
2 5
5 6
5 7
4 6

Sample Output

1
2
3
4
2
5
4
6
5
7

解题思路:求解欧拉回路或通路的路径。使用DFS或者Fleury。
关于欧拉回路求解的详解

 1 #include<cstdio>
 2 #include<stdio.h>
 3 #include<cstring>
 4 #include<algorithm>
 5 #define MAX 2010
 6 int maps[MAX][MAX];
 7 int in[MAX];
 8 int t[MAX];
 9 int flag;
10 int k;
11 int Max,Min;
12 using namespace std;
13 int DFS(int x)
14 {
15     int i;
16     for(i=Min;i<=Max;i++)
17     {
18         if(maps[x][i])
19         {
20             maps[x][i]--;
21             maps[i][x]--;
22             DFS(i);
23         }
24     }
25     t[++k]=x;
26 }
27 int main()
28 {
29     int n,i,x,y;
30     Max=-9999;
31     Min=9999;
32     flag=0;
33     scanf("%d",&n);
34     for(i=1;i<=n;i++)
35     {
36         scanf("%d%d",&x,&y);
37         maps[x][y]++;
38         maps[y][x]++;
39         Max=max(x,max(y,Max));
40         Min=min(x,min(y,Min));
41         in[x]++;
42         in[y]++;
43     }
44     for(i=Min;i<=Max;i++)
45     {
46         if(in[i]%2)
47         {
48             flag=1;
49             DFS(i);
50             break;
51         }
52     }
53     if(!flag)
54     {
55         DFS(Min);
56     }
57     for(i=k;i>=1;i--)
58     {
59         printf("%d\n",t[i]);
60     }
61     return 0;
62 }
 
 

 

 

转载于:https://www.cnblogs.com/wkfvawl/p/9707945.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值