BZOJ2707 [SDOI2012]走迷宫 【概率dp + tarjan + 高斯消元】

本文介绍了一种计算在有向图迷宫中从起点到终点期望步数的方法,利用强连通分量和高斯消元法解决一般有向图的路径问题。

题目

Morenan被困在了一个迷宫里。迷宫可以视为N个点M条边的有向图,其中Morenan处于起点S,迷宫的终点设为T。可惜的是,Morenan非常的脑小,他只会从一个点出发随机沿着一条从该点出发的有向边,到达另一个点。这样,Morenan走的步数可能很长,也可能是无限,更可能到不了终点。若到不了终点,则步数视为无穷大。但你必须想方设法求出Morenan所走步数的期望值。

输入格式

第1行4个整数,N,M,S,T
第[2, M+1]行每行两个整数o1, o2,表示有一条从o1到o2的边。

输出格式

一个浮点数,保留小数点3位,为步数的期望值。若期望值为无穷大,则输出"INF"。

输入样例

9 12 1 9
1 2
2 3
3 1
3 4
3 7
4 5
5 6
6 4
6 7
7 8
8 9
9 7

输出样例

9.500

提示

测试点
N M
[1, 6] <=10 <=100

[7, 12] <=200 <=10000

[13, 20] <=10000 <=1000000
保证强连通分量的大小不超过100
另外,均匀分布着40%的数据,图中没有环,也没有自环

题解

此题和游走那题有异曲同工之妙
我们设\(f[i]\)表示从\(i\)点出发到达终点的期望步数
就有\(f[i] = \frac{\sum (f[to] + 1)}{outde[i]}\)

假若这是一个DAG图,反向dp就可以了
但是如果是一般有向图,我们进行缩点,先计算后面的强联通分量
同一个强联通分量之间,其式子的to要么是之后已经计算好了的点,要么就是强联通分量内部的点,可以用高斯消元解出

判定时,只需要看S出发到达的所有点能否都到达T就可以了

写起来真要命
T出发的边没有任何意义,不要添加,否则可能会导致方程组无解

我丑陋杂乱的代码

#include<iostream>
#include<cstdio>
#include<cmath>
#include<vector>
#include<cstring>
#include<algorithm>
#define eps 1e-8
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 10005,maxm = 1000005,INF = 1000000000;
inline int read(){
    int out = 0,flag = 1; char c = getchar();
    while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    return out * flag;
}
int h[maxn],ne = 2;
int h2[maxn],ne2 = 2;
int h3[maxn],ne3 = 2;
int n,m,S,T;
int inde[maxn];
double de[maxn];
struct EDGE{int to,nxt;}ed[maxm],ed2[maxm],ed3[maxm];
inline void build(int u,int v){
    if (u == T) return;
    ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;
    de[u] += 1;
    ed3[ne3] = (EDGE){u,h3[v]}; h3[v] = ne3++;
}
inline void add(int u,int v){
    ed2[ne2] = (EDGE){v,h2[u]}; h2[u] = ne++;
}
int dfn[maxn],low[maxn],st[maxn],Scc[maxn],scci,top,cnt;
vector<int> scc[maxn];
void dfs(int u){
    dfn[u] = low[u] = ++cnt;
    st[++top] = u;
    Redge(u){
        if (!dfn[to = ed[k].to]){
            dfs(to);
            low[u] = min(low[u],low[to]);
        }else if (!Scc[to]) low[u] = min(low[u],dfn[to]);
    }
    if (low[u] == dfn[u]){
        scci++;
        do{
            Scc[st[top]] = scci;
            scc[scci].push_back(st[top]);
        }while (st[top--] != u);
    }
}
void tarjan(){
    for (int i = 1; i <= n; i++) if (!dfn[i]) dfs(i);
}
void rebuild(){
    for (int i = 1; i <= n; i++){
        int u = Scc[i];
        Redge(u) if (Scc[to = ed[k].to] != u)
            add(Scc[to],u);
    }
}
int vis[maxn];
void dfs1(int u){
    vis[u] = 1;
    Redge(u) if (!vis[to = ed[k].to]) dfs1(to);
}
void dfs2(int u){
    vis[u] += 2;
    for (int k = h3[u],to; k; k = ed3[k].nxt)
        if (vis[to = ed3[k].to] <= 1) dfs2(to);
}
bool check(){
    dfs1(S);
    dfs2(T);
    for (int i = 1; i <= n; i++) if (vis[i] == 1) return false;
    return true;
}
double f[maxn];
double A[205][205];
int id[maxn],c[maxn];
void gause(int u){
    int cnt = scc[u].size();
    for (int i = 1; i <= cnt; i++){
        c[i] = scc[u][i - 1];
        id[c[i]] = i;
    }
    for (int i = 1; i <= cnt + 1; i++)
        for (int j = 1; j <= cnt + 1; j++)
            if (i != j) A[i][j] = 0;
            else A[i][j] = 1;
    for (int i = 1; i <= cnt; i++){
        Redge(c[i]){
            to = ed[k].to;
            if (Scc[to] != u) A[i][cnt + 1] += (f[to] + 1) / de[c[i]];
            else A[i][id[to]] -= 1 / de[c[i]],A[i][cnt + 1] += 1 / de[c[i]];
        }
    }
    for (int i = 1; i <= cnt; i++){
        int j = i;
        while (j <= cnt && fabs(A[j][i]) <= eps) j++;
        if (j == cnt + 1){
            puts("INF");
            exit(0);
        }
        if (j != i) for (int k = 1; k <= cnt + 1; k++)
            swap(A[i][k],A[j][k]);
        for (int j = i + 1; j <= cnt; j++){
            if (fabs(A[j][i]) > eps){
                double t = A[j][i];
                for (int k = i; k <= cnt + 1; k++)
                    A[j][k] = A[j][k] / t * A[i][i];
                for (int k = i; k <= cnt + 1; k++)
                    A[j][k] -= A[i][k];
            }
        }
    }
    for (int i = cnt; i; i--){
        for (int j = i + 1; j <= cnt; j++)
            A[i][cnt + 1] -= A[i][j] * f[c[j]];
        if (fabs(A[i][i]) <= eps){
            puts("INF");
            exit(0);
        }
        A[i][cnt + 1] /= A[i][i];
        f[c[i]] = A[i][cnt + 1];
    }
}
void solve(){
    for (int i = 1; i <= scci; i++) gause(i);
    printf("%.3lf\n",f[S]);
}
int main(){
    n = read(); m = read(); S = read(); T = read();
    int a,b;
    while (m--){
        a = read(); b = read();
        build(a,b);
    }
    if (!check()){
        puts("INF");
        return 0;
    }
    tarjan();
    rebuild();
    solve();
    return 0;
}

转载于:https://www.cnblogs.com/Mychael/p/8595772.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值