TensorFlow RNN tutorial解读

本文深入探讨了LSTM(长短期记忆网络)的结构及其在TensorFlow中的实现细节。重点介绍了num_steps参数的作用,以及如何利用RNN进行单词预测,并对比了其与seq2seq模型的不同之处。

github链接

和其他代码比起来,这个代码的结构很不科学,只有一个主文件,model和train没有分开……

参考链接:
tensorflow笔记:多层LSTM代码分析

代码分析:
  1. num_steps是什么?
    下图左边是rolled版本,这种结构的反向传播计算很困难。因此采用右边这种结构,有num_step个x输入。每次训练数据输入格式为[batch_size, num_steps](类比seq2seq中的encoder_input的shape [batch_size, encoder_size])。如下图:
    500
  2. 和seq2seq的区别?
    seq2seq是分为了两个部分,encoder和decoder部分。在RNN中,只有encode,即输入x,输出o,不需要decoder_input部分。在本例中,输入是[batch_size, num_steps]个的单词预测概率(one-hot形式)。和[batch_size, num_steps]个target(数字形式)作比较。计算loss的函数是tf.contrib.seq2seq.sequence_loss
  3. graph是怎么run起来的?
    定义了模型之后,第二个graph负责给model feed并统计结果。
    要fetch的内容有:model.cost,model.final_state, model.eval_op(train_op)
    vals = session.run(fetches, feed_dict)
代码结构:
reader.py中的两个主要函数:
  • ptb_raw_data把三个txt中的单词都转化成唯一的id,只保留最常见的10000个单词。
  • ptb_producer定义了input和target。格式为:batch_size*num_steps的二维矩阵。target是input右移1位后的结果。即通过前一个单词预测后一个单词。
ptb_word_lm.py中

首先定义了PTBModel结构,__init__函数定义了self.config, inputs, output, state, self.logits, self.cost, self.final_state, (self.learning_rate, self._train_op, self._new_lr, self._lr_update)这些是train才有的。

最后在main函数里
  • 第一个graph里,分别构建learn\valid\test PTBmodel,保存在metagraph中。
  • 第二个graph里,导入metagraph,对于三个模型分别run_epoch。

转载于:https://www.cnblogs.com/yingtaomj/p/7777222.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值