Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s = "aab"
,
Return 1
since the palindrome partitioning ["aa","b"]
could be produced using 1 cut.
这道题很惭愧,想直接在上一道题的代码上改,结果还是重写了。
之前为了方便算回文,插入“#”。但是程序会报内存不足,所以不能用这种扩展方式,只能拿string.size来建dp数组
后面根据数组,用dp继续做cut。cut的时候 cut j = min(cut j , cut i +1 (if dp[i+1][j] == 1)).要注意该推导式不需要dp[0][i] == 1
class Solution {
public:
int minCut(string s) {
vector<vector <int> >dp;
int len = s.size();
if(len == 1)return 0;
for(int i = 0 ; i < len ;i++)
{
vector<int> tp(len,0);
dp.push_back(tp);
}
for(int i = 0 ; i < len ; i++)
dp[i][i] = 1;
for(int i = 0 ; i < len ;i++)
{
int j = 1;
while(i-j>=0 && i+j<len && s[i-j] == s[i+j])
{
dp[i-j][i+j] = 1;
j++;
}
int x = i , y =i+1;
while(x>=0 && y<len)
{
if(s[x]==s[y])
{
dp[x][y]=1;
x--;
y++;
}
else
break;
}
}
int num = 0;
if(dp[0][len-1]==1)return 0;
vector<int> cut(len ,1);
for(int i = 0 ; i < len ;i++)
if(dp[0][i]==1)cut[i] = 1;
else
cut[i] = i+1;
for(int i = 1;i<len;i++)
{
for(int j = 0 ;j <i ;j++)
{
if(j+1<len && dp[j+1][i]==1)
{
cut[i] = min(cut[j]+1,cut[i]);
}
}
}
return cut[len-1]-1;
}
};