KMeans聚类算法

from pyspark.ml.clustering import KMeans, KMeansModel
from pyspark import SparkContext
from pyspark.sql import SparkSession, Row
from pyspark.ml.linalg import Vector, Vectors

sc = SparkContext('local','KMeans聚类算法')
spark = SparkSession.builder.master('local').appName('KMeans聚类算法').getOrCreate()

def f(x):
rel={}
rel['features'] = Vectors.dense(float(x[0]), float(x[1]), float(x[2]), float(x[3]))
return rel

df = sc.textFile("file:///usr/local/spark/mycode/exercise/iris.txt").map(lambda line: line.split(",")).map(lambda p: Row(**f(p))).toDF()

kmeansmodel = KMeans().setFeaturesCol('features').setPredictionCol('prediction').fit(df)

results = kmeansmodel.transform(df).collect()
# for item in results:
# print(str(item[0])+' is predcted as cluster'+ str(item[1]))

results2 = kmeansmodel.clusterCenters()
# for item in results2:
# print(item)

kemdata=kmeansmodel.computeCost(df)
print(kemdata)

转载于:https://www.cnblogs.com/SoftwareBuilding/p/9525023.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值