Pipeline和FeatureUnion

注:本文是人工智能研究网的学习笔记

Pipeline:chaining(链接)estimators

Pipeline可以用于把多个estimators级联合成一个estimator。这么做的原因是考虑了数据处理过程的一系列前后相继的固定流程,比如:feature selection --> normalization --> classification。

在这里,Pipeline提供了两种服务:

  1. Convenience: 你只需要一次fit和predict就可以在数据集上训练一组estimators。
  2. Join parameter selection: 可以把grid search用在pipeline中所有的estimators的参数组合上面。

注意: pineline中除了最后一个之外的所有的estimators都必须是变换器(transformers)(也就是说必须要有一个transform方法)。最后一个estimator可以是任意的类型(transformer, classifier, regresser, etc)。

调用pipeline estimator的fit方法,就等于是轮流调用每一个estimator的fit函数一样,不断地变换输入,然后把结果传递到下一个阶段(step)的estimator。Pipeine对象实例拥有最后一个estimator的所有的方法。也就是说,如果最后一个estimator是一个分类器,则整个pipeline就可以作为一个分类器使用,如果最后一个eatimator是一个聚类器,则整个pipeline就可以作为一个聚类器使用。

Pipeline用法:

Pipeline对象使用(key, value)列表来构建,其中key是一个标识步骤的名称字符串,值是一个estimator对象:

from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
from sklearn.decomposition import PCA  # 主成分分析

estimators = [('reduce_dim', PCA()), ('clf', SVC()) ]
pipe = Pipeline(estimators)
print(pipe)
print('-----------')
print(pipe.steps)
print('-----------')
print(pipe.named_steps['clf'])

1203446-20171014114707355-573092244.png

Pipeline中estimators的参数通过__语法来获取

pipe.set_params(clf__C=10)

上面的方式在网格搜索中尤其好用

from sklearn.model_selection import GridSearchCV
params = dict(reduce_dim__n_components=[2, 5, 10],
              clf__C=[0.1, 10, 100])
grid_search = GridSearchCV(pipe, param_grid=params)              

单个的阶段(Step)可以使用参数替换,而且非最后阶段(non-final steps)还可以将其设置为None来忽略。

from sklearn.linear_model import LogisticRegression
params = dict(reduce_dim=[None, PCA(5), PCV(10)],
              clf=[SVC(), LogisticRegression()],
              clf__C=[0.1, 10, 100])
grid_search = GridSearchCV(pipe, param_grid=params)        

函数make_pipeline是一个构造pipeline的简短的工具,它可以接受可变数量的estimators并且返回一个pipeline,每个estimator的名称是自动填充的,他不需要指定name。

from sklearn.pipeline import make_pipeline
from sklearn.naive_bayes import MultinomialNB
from sklearn.preprocessing import Binarizer

make_pipeline(Binarizer(), MultinomialNB())

1203446-20171014120631324-123800994.png

FeatureUnion: composite(组合)feature spaces

FeatureUnion把若干个transformer object组合成一个新的estimators。这个新的transformer组合了他们的输出,一个FeatureUnion对象接受一个transformer对象列表。

在训练阶段,每一个transformer都在数据集上独立的训练。在数据变换阶段,多有的训练好的Trandformer可以并行的执行。他们输出的样本特征向量被以end-to-end的方式拼接成为一个更大的特征向量。

在这里,FeatureUnion提供了两种服务:

  1. Convenience: 你只需要调用一次fit和transform就可以在数据集上训练一组estimators。
  2. Joint parameter selection: 可以把grid search用在FeatureUnion中所有的estimators的参数这上面。

FeatureUnion和Pipeline可以组合使用来创建更加复杂的模型。

注意:FeatureUnion无法检查两个transformers是否产生了相同的特征输出,它仅仅产生了一个原来互相分离的特征向量的集合。确保其产生不一样的特征输出是调用者的事情。

用法:

FeatureUnion对象实例使用(key, value)构成的list来构造,key是你自己起的transformation的名称,value是一个estimator对象。

from sklearn.pipeline import FeatureUnion
from sklearn.decomposition import PCA
from sklearn.decomposition import KernelPCA
estimators = [('linear_pca', PCA()), ('kernel_pca', KernelPCA())]
combined = FeatureUnion(estimators)
combined

1203446-20171014122301230-123082611.png

与pipeline类似,feature unions也有一个比较简单地构造方法make_union,不需要显式的给出name。

转载于:https://www.cnblogs.com/cnkai/p/7755065.html

### 使用 `make_pipeline` 进行分类任务 在 scikit-learn 中,`make_pipeline` 是一种便捷的方法来构建机器学习流水线。通过这种方式可以简化数据预处理模型训练的过程。 对于分类任务而言,通常会涉及到多个预处理步骤以及最终的分类器应用。下面是一个具体的例子展示如何利用 `make_pipeline` 来完成这一过程: ```python from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 加载鸢尾花数据集作为示例 data = load_iris() X, y = data.data, data.target # 划分训练集测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建管道:标准化 -> 支持向量机分类器 pipeline = make_pipeline(StandardScaler(), SVC()) # 训练模型 pipeline.fit(X_train, y_train) # 预测新样本类别标签 predictions = pipeline.predict(X_test) # 输出预测准确性 print(f'Accuracy: {accuracy_score(y_test, predictions):.3f}') ``` 上述代码展示了创建一个简单的分类工作流,其中包含了标准缩放变换(用于数值型特征)SVM分类器的应用[^1]。 值得注意的是,在更复杂的情况下,如果存在不同类型的数据(比如既有文本又有数字),则可能需要用到 `ColumnTransformer` 或者 `FeatureUnion` 来分别对不同类型的列执行不同的转换操作后再送入下游算法中去[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值