算法1。动态规划
dp[i][j] 表示的是 从i 到 j 的字串,是否是回文串。
则根据回文的规则我们可以知道:
如果s[i] == s[j] 那么是否是回文决定于 dp[i+1][ j - 1]
当 s[i] != s[j] 的时候, dp[i][j] 直接就是 false。
动态规划的进行是按照字符串的长度从1 到 n推进的。
代码很明晰:给出java代码,复杂度 O(n^2)
public class Solution {
boolean[][] dp;
public String longestPalindrome(String s)
{
if(s.length() == 0)
{
return "";
}
if(s.length() == 1)
{
return s;
}
dp = new boolean[s.length()][s.length()];
int i,j;
for( i = 0; i < s.length(); i++)
{
for( j = 0; j < s.length(); j++)
{
if(i >= j)
{
dp[i][j] = true; //当i == j 的时候,只有一个字符的字符串; 当 i > j 认为是空串,也是回文
}
else
{
dp[i][j] = false; //其他情况都初始化成不是回文
}
}
}
int k;
int maxLen = 1;
int rf = 0, rt = 0;
for( k = 1; k < s.length(); k++)
{
for( i = 0; k + i < s.length(); i++)
{
j = i + k;
if(s.charAt(i) != s.charAt(j)) //对字符串 s[i....j] 如果 s[i] != s[j] 那么不是回文
{
dp[i][j] = false;
}
else //如果s[i] == s[j] 回文性质由 s[i+1][j-1] 决定
{
dp[i][j] = dp[i+1][j-1];
if(dp[i][j])
{
if(k + 1 > maxLen)
{
maxLen = k + 1;
rf = i;
rt = j;
}
}
}
}
}
return s.substring(rf, rt+1);
}
}