pandas 新手学习笔记

本文介绍了使用Python的Pandas库进行数据操作的基本方法,包括如何创建DataFrame和Series,从CSV文件导入数据,以及如何进行数据的修改、查找和删除等基本操作。此外,还详细解释了Pandas中apply函数的应用场景及参数说明。

1. 创建DataFrame

fruit = pd.DataFrame({'Apple': [35, 41, 50], 'Bananas': [21, 34, 10]}, index = ['2017 Sales', '2018 Sales', '2019 Sales'])

  从csv导入数据

  s3 = pd.read_csv('Titanic.csv')

  保存到csv

  s3.to_csv('testsave.csv')

2. 创建Series

s2 = pd.Series(['4 cups', '1 cup', '2 large', '1 can'], index = ['Flaver', 'Milk', 'Eggs', 'Spam'])

index默认为数组下标(0,1,2 ...)

  删除

  s2.drop('Milk')

  修改

  s2['Milk'] = '3 cups'

  查找

  s2['Milk']

3. Pandas用过的函数

  1)apply

   DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds) 

   def remean_points(srs):

    srs.points = srs.points - review_points_mean

    return srs

   reviews.apply(remean_points, axis = 1)

    其中func : function|要应用在行和列的函数 
    axis : {0 or ‘index’, 1 or ‘columns’}, default 0|选择是行还是列 
    broadcast : boolean, default False|For aggregation functions, return object of same size with values propagated 
    raw : boolean, default False|If False, convert each row or column into a Series. If raw=True the passed function will receive ndarray objects instead. 
    reduce : boolean or None, default None|Try to apply reduction procedures. 
    args : tuple|函数的参数

  

转载于:https://www.cnblogs.com/pf2018/p/8777939.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值