基于麦克风阵列的声源定位算法之GCC-PHAT

本文介绍了基于麦克风阵列的声源定位技术,重点讨论了GCC-PHAT算法,包括计算传播时延、加权函数、互相关函数及其在近场和远场的应用。GCC-PHAT通过相位变换加权提高时延估计精度,适用于混响环境,但低信噪比环境下性能受限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 目前基于麦克风阵列的声源定位方法大致可以分为三类:基于最大输出功率的可控波束形成技术、基于高分辨率谱图估计技术和基于声音时间差(time-delay estimation,TDE)的声源定位技术。

基于TDE的算法核心在于对传播时延的准确估计,一般通过对麦克风间信号做互相关处理得到。进一步获得声源位置信息,可以通过简单的延时求和、几何计算或是直接利用互相关结果进行可控功率响应搜索等方法。这类算法实现相对简单,运算量小,便于实时处理,因此在实际中运用最广。

GCC-PHAT

基于广义互相关函数的时延估计算法引入了一个加权函数,对互功率谱密度进行调整,从而优化时延估计的性能。根据加权函数的不同,广义互相关函数有多种不同的变形,其中广义互相关-相位变换方法(Generalized Cross Correlation PHAse Transformation,GCC-PHAT)方法应用最为广泛。GCC-PHAT方法本身具有一定的抗噪声和抗混响能力,但是在信噪比降低和混响增强时,该算法性能急剧下降。

研究表明麦克风对的GCC-PHAT函数的最大值越大则该对麦克风的接收信号越可靠,也就是接收信号质量越高。

1、计算传播时延

广义互相关函数时延估计算法根据两个麦克风信号的互相关函数峰值来估计时延值。在声源定位系统中,麦克风阵列的每个阵元接收到的目标信号都来自于同一个声源。因此,各通道信号之间具有较强的相关性。理想情况下,通过计算每两路信号之间的相关函数,就可以确定两个麦克风观测信号之间的时延。

阵列中两个麦克风的接收信号为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值