Applese 的毒气炸弹 G 牛客寒假算法基础集训营4(图论+最小生成树)

链接:https://ac.nowcoder.com/acm/contest/330/G
来源:牛客网

Applese 的毒气炸弹
时间限制:C/C++ 2秒,其他语言4秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld

题目描述


众所周知,Applese 是个很强的选手,它的化学一定很好。

今天他又AK了一套题觉得很无聊,于是想做个毒气炸弹玩。

毒气炸弹需要 k 种不同类型元素构成,Applese一共有 n 瓶含有这些元素的试剂。

已知元素混合遵循 m 条规律,每一条规律都可以用 "x y c" 描述。

表示将第 x 瓶试剂混入第 y 瓶试剂或者把第 y 瓶试剂混入第 x 瓶试剂,需要消耗 c 的脑力。

特别地,除了这 m 条规律外,Applese 可以将任意两瓶相同元素的试剂混合,且 不需要消耗脑力。

Applese 想要配出毒气炸弹,就需要使 S 中含有 1k1∼k 这 k 种元素。它想知道自己最少花费多少脑力可以把毒气炸弹做出来。

输入描述:

第一行为三个整数 n, m, k 表示 Applese 拥有的试剂的数量,混合规律的数量和所需的元素种类数。
第二行为 n 个整数 a1,a2,,ana1,a2,…,an,分别表示每一瓶试剂的元素类型。
接下来m行,每行三个整数 x, y, c,含义如题目描述中所述。不保证 x, y的试剂种类不同。

输出描述:

输出一个正整数表示最小的耗费脑力。特别地,如果无法合成出毒气炸弹,输出 "-1"。
示例1

输入

复制
6 8 2
1 1 1 2 2 2
1 2 1
2 3 2
1 3 3
3 4 6
4 5 1
4 6 3
5 6 2
1 6 2

输出

复制
2

备注:

1n,k,m1051≤n,k,m≤105
1x,yn,xy1≤x,y≤n,x≠y
1c109


思路:
看成一张图,就是把同类元素的试剂当作一个点之后,求这个图的最小生成树。
然后用你最喜欢的求MST的算法求解就好。注意判不连通的情况。

细节见代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#define rt return
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
inline void getInt(int* p);
const int maxn=1000010;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
struct Edge
{
    int f,t,w;
    Edge(){}
    Edge(int ff,int tt,int ww)
    {
        f=ff;
        t=tt;
        w=ww;
    }
};
std::vector<Edge> edge;
bool cmp(Edge a,Edge b)
{
    return a.w<b.w;
}
// 并查集部分
int fa[maxn];
int findpar(int x)
{
    if(fa[x]==x)
        return x;
    else
        return fa[x]=findpar(fa[x]);
}
void initufs(int n)
{
    repd(i,1,n)
    {
        fa[i]=i;
    }
}
int n,m,k; // 
int a[maxn];
ll Kruskal()
{
    ll res=0ll;
    initufs(n);
    int cnt=0;// 记录了MST加入了几个节点
    for(int i=0;i<edge.size();i++)
    {
        int u=findpar(edge[i].f);
        int v=findpar(edge[i].t);
        if(u==v)
            continue;
        fa[u]=v; // merge
        res+=edge[i].w;
        cnt++;
        if(cnt==k-1) // 已经加满了树
            break;
    }
    if(cnt!=k-1)
        return -1;
    else
        return res;
}
int main()
{
    scanf("%d %d %d",&n,&m,&k);
    repd(i,1,n)
    {
        scanf("%d",&a[i]);
    }    
    int u,v,w;
    repd(i,1,m)
    {
        scanf("%d %d %d",&u,&v,&w);
        u=a[u];v=a[v];
        if(u==v)
            continue;
        if(u>=1&&u<=k&&v>=1&&v<=k)
        {
            edge.push_back(Edge(u,v,w));
        }

    }
    sort(edge.begin(),edge.end(),cmp);
    ll res=Kruskal();
    printf("%lld\n",res );
    return 0;
}

inline void getInt(int* p) {
    char ch;
    do {
        ch = getchar();
    } while (ch == ' ' || ch == '\n');
    if (ch == '-') {
        *p = -(getchar() - '0');
        while ((ch = getchar()) >= '0' && ch <= '9') {
            *p = *p * 10 - ch + '0';
        }
    }
    else {
        *p = ch - '0';
        while ((ch = getchar()) >= '0' && ch <= '9') {
            *p = *p * 10 + ch - '0';
        }
    }
}

 

 

转载于:https://www.cnblogs.com/qieqiemin/p/10336421.html

### 关于2020年寒假算法基础集训营中的欧几里得算法 在2020年的寒假算法基础集训营中,确实存在涉及欧几里得算法的相关题目。具体来说,在第四场竞赛的第一题即为“A. 欧几里得”,该题目的核心在于利用扩展欧几里得定理来解决问题[^5]。 #### 扩展欧几里得算法简介 扩展欧几里得算法主要用于求解形如 ax + by = gcd(a, b) 的线性不定方程的一组特解(x,y),其中gcd表示最大公约数。此方法不仅能够计算两个整数的最大公因数,还能找到满足上述条件的具体系数x和y。 对于给定的数据范围较小的情况可以直接通过递归来实现;而对于较大数据则需考虑效率优化问题。下面给出了一段基于C++语言编写的用于解决此类问题的模板代码: ```cpp #include<bits/stdc++.h> #define int long long using namespace std; // 定义全局变量存储结果 int x, y; void ex_gcd(int a, int b){ if(b == 0){ x = 1; y = 0; return ; } ex_gcd(b, a % b); int tmp = x; x = y; y = tmp - (a / b) * y; } ``` 这段程序实现了经典的扩展欧几里得算法逻辑,并且可以作为处理类似问题的基础工具函数调用。 #### 实际应用案例分析 回到原题本身,“A. 欧几里得”的解答思路就是先预处理斐波那契数列前若干项数值存入数组`a[]`内以便快速查询,之后针对每一次询问直接输出对应位置处两相邻元素之和即可得出最终答案。这实际上巧妙运用到了广为人知的裴蜀定理——任意一对互质正整数都可由它们自身的倍数组合而成,而这里正是借助了这一性质简化了解决方案的设计过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值