Loj 538 递推数列

Loj 538 递推数列

出题人:这题提高难度吧.于是放在了%你赛的 \(D1T2\) .

  • 递推式为 \(a_i=k*a_{i-1}+a_{i-2}\) , 注意到 \(k\in \mathbb{N_+}\) ,容易发现一个比较显然的性质:

    \(a_i>a_{i-1}\geq 0\) , 或者 \(a_i<a_{i-1}\leq 0\) ,则该数列在第 \(i-1\) 项后单调上升或单调下降.

  • 基于这个性质,一个比较自然的想法是,一直爆算 \(a_i\) ,使得数列 \(a\) 单调后退出,再利用单调性来算答案.

  • 这样搞能得到多少分? \(20?\ 25?\ 30?\) 万一被构造数据卡到很久都进不了单调咋办?

  • 事实上,这样计算可以获得 \(100\) 分的好成绩.借助下面这张图来分析,比例可能不太真实,意会即可.

示意图

  • 假定在 \(i=pos\) 处第一次满足 \(a_i>a_{i-1}\geq 0\)\(a_i<a_{i-1}\leq 0\).那么 \(pos-1\) 之前的项都是正负交替出现的.否则若有 \(i<pos-1,0<a_i<a_{i-1}\) ,则 \(a_{i+1}>a_i>0\) , \(i+1<pos\) , 应是第一个找到的 \(pos\) ,矛盾.
  • 那么记 \(b_i=|a_i|\) ,则有 \(\forall\ i\in [2,pos-1),b_i=-kb_{i-2}+b_{i-1}.\),且 \(b\) 单调递减.
  • 移项变形,得 \(b_{i-2}=kb_{i-1}+b_i\geq(k+1)b_i\). 又因 \(k\in \mathbb{N_+}\) ,可得 \(pos\leq 2log_{k+1}|a_0|\) .
  • 类似可以证明单调后在 \(O(loga)\) 个数内,绝对值将超过前面( \(S_1\) 内元素)的绝对值.
  • 于是,整个算法的时间复杂度为 \(O(nloga)\) .实现起来细节比较多.

有时, \(yy\) 出一个做法或许并不难,难的是判断这个做法是否可行...

转载于:https://www.cnblogs.com/jklover/p/10439980.html

内容概要:《中文大模型基准测评2025年上半年报告》由SuperCLUE团队发布,详细评估了2025年上半年中文大模型的发展状况。报告涵盖了大模型的关键进展、国内外大模型全景图及差距、专项测评基准介绍等。通过SuperCLUE基准,对45个国内外代表性大模型进行了六大任务(数学推理、科学推理、代码生成、智能体Agent、精确指令遵循、幻觉控制)的综合测评。结果显示,海外模型如o3、o4-mini(high)在推理任务上表现突出,而国内模型如Doubao-Seed-1.6-thinking-250715在智能体Agent和幻觉控制任务上表现出色。此外,报告还分析了模型性价比、效能区间分布,并对代表性模型如Doubao-Seed-1.6-thinking-250715、DeepSeek-R1-0528、GLM-4.5等进行了详细介绍。整体来看,国内大模型在特定任务上已接近国际顶尖水平,但在综合推理能力上仍有提升空间。 适用人群:对大模型技术感兴趣的科研人员、工程师、产品经理及投资者。 使用场景及目标:①了解2025年上半年中文大模型的发展现状与趋势;②评估国内外大模型在不同任务上的表现差异;③为技术选型和性能优化提供参考依据。 其他说明:报告提供了详细的测评方法、评分标准及结果分析,确保评估的科学性和公正性。此外,SuperCLUE团队还发布了多个专项测评基准,涵盖多模态、文本、推理等多个领域,为业界提供全面的测评服务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值