PAT 1126 Eulerian Path

本文介绍了一种用于判断无向图是否为欧拉图、半欧拉图或非欧拉图的算法,并提供了完整的C++实现代码。通过输入顶点数、边数及各边的端点,该算法能输出每个顶点的度数并判断图的类型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:

For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either Eulerian, Semi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:

7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6

Sample Output 1:

2 4 4 4 4 4 2
Eulerian

Sample Input 2:

6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6

Sample Output 2:

2 4 4 4 3 3
Semi-Eulerian

Sample Input 3:

5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3

Sample Output 3:

3 3 4 3 3
Non-Eulerian

#include<iostream> //注意检查连通性
#include<vector>
using namespace std;
int cnt=0;
vector<vector<int>> graph;
vector<int> visited(501, 0);
void dfs(int s){
    visited[s]=1;
    cnt++;
    for(int i=0; i<graph[s].size(); i++)
        if(visited[graph[s][i]]==0)
            dfs(graph[s][i]);
}
int main(){
  int vn, en, even=0;
  cin>>vn>>en;
  vector<int> degrees(vn+1, 0);
  graph.resize(vn+1);
  for(int i=0; i<en; i++){
    int v1, v2;
    cin>>v1>>v2; 
    graph[v1].push_back(v2);
    graph[v2].push_back(v1);
    degrees[v1]++;
    degrees[v2]++;
  }
  dfs(1);
  for(int i=1; i<=vn; i++){
    i==1?cout<<degrees[i]:cout<<" "<<degrees[i];
    even=(degrees[i]%2==0?even:even+1);
  }    
  cout<<endl;
  if(even==0&&cnt==vn)
    cout<<"Eulerian"<<endl;
  else if(even==2&&cnt==vn)
    cout<<"Semi-Eulerian"<<endl;
  else
    cout<<"Non-Eulerian"<<endl;
  return 0;
}

转载于:https://www.cnblogs.com/A-Little-Nut/p/9506562.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值