POJ2185(KMP)

Milking Grid

Time Limit: 3000MS Memory Limit: 65536K
Total Submissions: 7896 Accepted: 3408

Description

Every morning when they are milked, the Farmer John's cows form a rectangular grid that is R (1 <= R <= 10,000) rows by C (1 <= C <= 75) columns. As we all know, Farmer John is quite the expert on cow behavior, and is currently writing a book about feeding behavior in cows. He notices that if each cow is labeled with an uppercase letter indicating its breed, the two-dimensional pattern formed by his cows during milking sometimes seems to be made from smaller repeating rectangular patterns. 

Help FJ find the rectangular unit of smallest area that can be repetitively tiled to make up the entire milking grid. Note that the dimensions of the small rectangular unit do not necessarily need to divide evenly the dimensions of the entire milking grid, as indicated in the sample input below. 

Input

* Line 1: Two space-separated integers: R and C 

* Lines 2..R+1: The grid that the cows form, with an uppercase letter denoting each cow's breed. Each of the R input lines has C characters with no space or other intervening character. 

Output

* Line 1: The area of the smallest unit from which the grid is formed 

Sample Input

2 5
ABABA
ABABA

Sample Output

2

Hint

The entire milking grid can be constructed from repetitions of the pattern 'AB'.
 
利用KMP求行和列的最小循环节,并找出它们的最小公倍数,行和列相乘即为答案。
 1 //2016.8.17
 2 #include<iostream>
 3 #include<cstdio>
 4 #include<algorithm>
 5 
 6 using namespace std;
 7 
 8 const int N = 10005;
 9 const int M = 80;
10 char grid[N][M];
11 int nex[N];
12 
13 int gcd(int a, int b)
14 {
15     return b==0?a:gcd(b, a%b);
16 }
17 
18 int lcm(int a, int b)
19 {
20     return a/gcd(a, b)*b;
21 }
22 
23 void getNext(int pos, int n, int fg)//构造next[]数组,fg为标记,0为行,1为列
24 {
25     nex[0] = -1;
26     for(int i = 0, fail = -1; i < n;)
27     {
28         if(fg == 0 && (fail == -1 || grid[pos][i] == grid[pos][fail]))
29         {
30             i++, fail++;
31             nex[i] = fail;
32         }else if(fg == 1 && (fail == -1 || grid[i][pos] == grid[fail][pos]))
33         {
34             i++, fail++;
35             nex[i] = fail;
36         }else fail = nex[fail];
37     }
38 }
39 
40 int main()
41 {
42     int n, m, clen, rlen;
43     while(scanf("%d%d", &n, &m)!=EOF)
44     {
45         clen = rlen = 1;
46         for(int i = 0; i < n; i++)
47             scanf("%s", grid[i]);
48         for(int i = 0; i < n; i++)//用最小公倍数找到循环块的宽度
49         {
50             getNext(i, m, 0);
51             rlen = lcm(rlen, m-nex[m]);//m-nex[m]为该行最小循环节的长度
52             if(rlen>=m){
53                 rlen = m; break;
54             }
55         }
56         for(int i = 0; i < m; i++)//用最小公倍数找到循环块的高度
57         {
58             getNext(i, n, 1);
59             clen = lcm(clen, n-nex[n]);//n-nex[n]为该列最小循环节的长度
60             if(clen>=n){
61                 clen = n; break;
62             }
63         }
64         printf("%d\n", clen*rlen);
65     }
66     return 0;
67 }

 

转载于:https://www.cnblogs.com/Penn000/p/5780641.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值