POJ 2355 Find a multiple(组合数学-抽屉原理)

寻找满足特定条件的数集
此博客讨论了一个算法问题,目标是从一组不超过15000的正整数中选择若干个数,使得这些数的和能被给定的整数N整除。通过分析前缀和及模运算,解决此数学难题。

Find a multiple
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 5881 Accepted: 2560 Special Judge

Description

The input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). Each of that numbers is not greater than 15000. This numbers are not necessarily different (so it may happen that two or more of them will be equal). Your task is to choose a few of given numbers ( 1 <= few <= N ) so that the sum of chosen numbers is multiple for N (i.e. N * k = (sum of chosen numbers) for some natural number k).

Input

The first line of the input contains the single number N. Each of next N lines contains one number from the given set.

Output

In case your program decides that the target set of numbers can not be found it should print to the output the single number 0. Otherwise it should print the number of the chosen numbers in the first line followed by the chosen numbers themselves (on a separate line each) in arbitrary order. 

If there are more than one set of numbers with required properties you should print to the output only one (preferably your favorite) of them.

Sample Input

5
1
2
3
4
1

Sample Output

2
2
3

Source



题目大意:

有n个数,找出一个方案满足:从中选出任意多的数字使得它们的和对n求余为0


解题思路:

用sum[i]记录前 i 项的和。

(1)如果存在某个sum[i]%n==0 ,那么就已经找到了,就是前i项。

(2)如果不存在,则sum[i]%n的取值范围为1~n-1 那么n项sum必然有 sum[i]%n==sum[j]%n,这时候(sum[j]-sum[i])%n=0,也就是 第i+1项到第j项的和对n求余为0,也满足条件了。


解题代码:

#include <iostream>
#include <cstdio>
using namespace std;

const int maxn=11000;
int n,a[maxn],sum[maxn],visited[maxn];

void solve(){
    for(int i=1;i<=n;i++){
        if(sum[i]%n==0){
            printf("%d\n",i);
            for(int t=1;t<=i;t++){
                printf("%d\n",a[t]);
            }
            return ;
        }
    }
    for(int i=0;i<=n;i++) visited[i]=-1;
    for(int i=1;i<=n;i++){
        if(visited[sum[i]%n]!=-1){
            int t=visited[sum[i]%n];
            printf("%d\n",i-t);
            for(t=t+1;t<=i;t++){
                printf("%d\n",a[t]);
            }
        }else{
            visited[sum[i]%n]=i;
        }
    }
}

int main(){
    while(scanf("%d",&n)!=EOF){
        for(int i=1;i<=n;i++) scanf("%d",&a[i]);
        sum[0]=0;
        for(int i=1;i<=n;i++) sum[i]=sum[i-1]+a[i];
        solve();
    }
    return 0;
}



转载于:https://www.cnblogs.com/toyking/p/3893187.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值