Keras + LSTM 做回归demo 2

接上回, 这次做了一个多元回归

这里贴一下代码

import numpy as np
np.random.seed(1337)
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential
from keras.layers import Activation
from keras.layers import LSTM
from keras.layers import Dropout
from keras.layers import Dense
import pandas as pd

  

datan = 1000
# 真实参数
ori_weights = [5, -4, 3, -2, 1]
colsn = len(ori_weights)
bias = -1
ori = np.zeros((1, colsn))
ori[0] = np.asarray(ori_weights)
# 列信息
cols_name = [chr(65+i) for i in range(colsn)]
X = np.zeros((colsn, datan))

for i in range(colsn):
    X[i] = np.random.normal(1, 0.1, datan)
# 真实Y
Y = np.matmul(ori, X) + bias + np.random.normal(-0.1, 0.1, (datan, ))
# 数据预览
df = pd.DataFrame(X.T, columns=cols_name)
df['Y'] = df.apply(lambda row: np.matmul(ori, [row[k] for k in df.columns] )[0]+bias, axis=1)
df['target'] = Y[0]
df.head()

  

 

X_train, X_test, Y_train, Y_test = train_test_split(X.T, Y.T, test_size=0.33, random_state=42)

  

neurons = 128          
activation_function = 'tanh'  
loss = 'mse'                  
optimizer="adam"              
dropout = 0.01 
batch_size = 12          
epochs = 200

  

model = Sequential()

model.add(LSTM(neurons, return_sequences=True, input_shape=(1, colsn), activation=activation_function))
model.add(Dropout(dropout))
model.add(LSTM(neurons, return_sequences=True, activation=activation_function))
model.add(Dropout(dropout))
model.add(LSTM(neurons, activation=activation_function))
model.add(Dropout(dropout))
model.add(Dense(output_dim=1, input_dim=1))

  

model.compile(loss=loss, optimizer=optimizer)

  

epochs = 2001
for step in range(epochs):
    cost = model.train_on_batch(X_train[:, np.newaxis], Y_train)
    if step % 30 == 0:
        print(f'{step} train cost: ', cost)

  

# test
print('Testing ------------')
cost = model.evaluate(X_test[:, np.newaxis], Y_test, batch_size=40)
print('test cost:', cost)

  

# plotting the prediction
Y_pred = model.predict(X_test[:, np.newaxis])
#
sdf = pd.DataFrame({'test':list(Y_test.T[0]), 'pred':list(Y_pred.T[0])})
sdf.sort_values(by='test', inplace=True)
#
plt.scatter(range(len(Y_test)), list(sdf.test))
plt.plot(range(len(Y_test)), list(sdf.pred), 'r--')
plt.show()

  

  

 

 

  

 

转载于:https://www.cnblogs.com/fadedlemon/p/10530244.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值