HDU 3698 Let the light guide us

本文探讨了一个在魔法战场布局魔法塔的问题,目标是优化布局以最小化总建设时间,同时确保相邻两层的魔法覆盖正确连接。通过动态规划和线段树等算法实现解决方案。

Let the light guide us

Time Limit: 2000ms
Memory Limit: 32768KB
This problem will be judged on  HDU. Original ID: 3698
64-bit integer IO format: %I64d      Java class name: Main
 
Plain of despair was once an ancient battlefield where those brave spirits had rested in peace for thousands of years. Actually no one dare step into this sacred land until the rumor that “there is a huge gold mine underneath the plain” started to spread. 

Recently an accident destroyed the eternal tranquility. Some greedy fools tried using powerful bombs to find the hidden treasure. Of course they failed and such behavior enraged those spirits--the consequence is that all the human villages nearby are haunted by ghosts.

In order to stop those ghosts as soon as possible, Panda the Archmage and Facer the great architect figure out a nice plan. Since the plain can be represented as grids of N rows and M columns, the plan is that we choose ONLY ONE cell in EACH ROW to build a magic tower so that each tower can use holy light to protect the entire ROW, and finally the whole plain can be covered and all spirits can rest in peace again. It will cost different time to build up a magic tower in different cells. The target is to minimize the total time of building all N towers, one in each row.

“Ah, we might have some difficulties.” said Panda, “In order to control the towers correctly, we must guarantee that every two towers in two consecutive rows share a common magic area.”

“What?”

“Specifically, if we build a tower in cell (i,j) and another tower in cell (i+1,k), then we shall have |j-k|≤f(i,j)+f(i+1,k). Here, f(i,j) means the scale of magic flow in cell (i,j).”

“How?”

“Ur, I forgot that you cannot sense the magic power. Here is a map which shows the scale of magic flows in each cell. And remember that the constraint holds for every two consecutive rows.”

“Understood.”

“Excellent! Let’s get started!”

Would you mind helping them?
 

Input

There are multiple test cases. 

Each test case starts with a line containing 2 integers N and M (2<=N<=100,1<=M<=5000), representing that the plain consists N rows and M columns.

The following N lines contain M integers each, forming a matrix T of N×M. The j-th element in row i (Tij) represents the time cost of building a magic tower in cell (i, j). (0<=Tij<=100000)

The following N lines contain M integers each, forming a matrix F of N×M. The j-th element in row i (Fij) represents the scale of magic flows in cell (i, j). (0<=Fij<=100000)

For each test case, there is always a solution satisfying the constraints.

The input ends with a test case of N=0 and M=0.
 

Output

For each test case, output a line with a single integer, which is the minimum time cost to finish all magic towers.
 

Sample Input

3 5
9 5 3 8 7
8 2 6 8 9
1 9 7 8 6
0 1 0 1 2
1 0 2 1 1
0 2 1 0 2
0 0

Sample Output

10

Source

 
解题:dp[i][j]表示第i行第j列放灯
 
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 const int N = 105;
 4 const int M = 5005;
 5 const int INF = 0x3f3f3f3f;
 6 struct node {
 7     int minv,lazy;
 8 } tree[M<<2];
 9 int T[N][M],F[N][M],dp[N][M];
10 void build(int L,int R,int v) {
11     tree[v].lazy = INF;
12     tree[v].minv = INF;
13     if(L == R) return;
14     int mid = (L + R)>>1;
15     build(L,mid,v<<1);
16     build(mid+1,R,v<<1|1);
17 }
18 inline void pushdown(int v) {
19     if(tree[v].lazy < INF) {
20         tree[v<<1].lazy = min(tree[v<<1].lazy,tree[v].lazy);
21         tree[v<<1].minv = min(tree[v<<1].minv,tree[v<<1].lazy);
22         tree[v<<1|1].lazy = min(tree[v<<1|1].lazy,tree[v].lazy);
23         tree[v<<1|1].minv = min(tree[v<<1|1].minv,tree[v<<1|1].lazy);
24         tree[v].lazy = INF;
25     }
26 }
27 inline void pushup(int v) {
28     tree[v].minv = min(tree[v<<1].minv,tree[v<<1|1].minv);
29 }
30 void update(int L,int R,int lt,int rt,int val,int v) {
31     if(lt <= L && rt >= R) {
32         tree[v].lazy = min(tree[v].lazy,val);
33         tree[v].minv = min(tree[v].lazy,tree[v].minv);
34         return;
35     }
36     pushdown(v);
37     int mid = (L + R)>>1;
38     if(lt <= mid) update(L,mid,lt,rt,val,v<<1);
39     if(rt > mid) update(mid+1,R,lt,rt,val,v<<1|1);
40     pushup(v);
41 }
42 int query(int L,int R,int lt,int rt,int v) {
43     if(lt <= L && rt >= R) return tree[v].minv;
44     pushdown(v);
45     int mid = (L + R)>>1,ret = INF;
46     if(lt <= mid) ret = query(L,mid,lt,rt,v<<1);
47     if(rt > mid) ret = min(ret,query(mid+1,R,lt,rt,v<<1|1));
48     pushup(v);
49     return ret;
50 }
51 int main() {
52     int n,m;
53     while(scanf("%d%d",&n,&m),n||m) {
54         for(int i = 1; i <= n; ++i)
55             for(int j = 1; j <= m; ++j)
56                 scanf("%d",T[i] + j);
57         for(int i = 1; i <= n; ++i)
58             for(int j = 1; j <= m; ++j)
59                 scanf("%d",F[i] + j);
60         for(int i = 1; i <= m; ++i) dp[1][i] = T[1][i];
61         for(int i = 2; i <= n; ++i) {
62             build(1,m,1);
63             for(int j = 1; j <= m; ++j)
64                 update(1,m,max(1,j - F[i-1][j]),min(j + F[i-1][j],m),dp[i-1][j],1);
65             for(int j = 1; j <= m; ++j) {
66                 int tmp = query(1,m,max(1,j - F[i][j]),min(m,j + F[i][j]),1);
67                 dp[i][j] = min(INF,tmp + T[i][j]);
68             }
69         }
70         int ret = INF;
71         for(int i = 1; i <= m; ++i)
72             ret = min(ret,dp[n][i]);
73         printf("%d\n",ret);
74     }
75     return 0;
76 }
View Code

 

转载于:https://www.cnblogs.com/crackpotisback/p/4743386.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值