Soft-Margin SVM

本文深入探讨了软边界支持向量机(SVM)的原理及求解过程,包括如何通过引入ε值处理噪声数据,以及在实际应用中选择合适的C和γ参数的方法。同时,阐述了软边界SVM与硬边界SVM的区别,并通过实例说明了软边界SVM在解决噪声数据集问题上的优势。

考虑这种情况:

image

倘若我们使用Hard-Margin SVM,不容许一点点的错误,就会得到右边的结果。很显然,左边的结果更合理,所以在实际情况中,我们使用能够接纳一定错误(容忍噪声)的SVM,即:soft-margin SVM。

image

合并两个条件,得:

image

这样做有几个问题:

image

一是我们的目标函数不再是线性的,所以不能使用QP;第二是我们对大的误差和小的误差一视同仁。

所以我们将∞更换为ε:

image

(这一点也是一个疑问:ε对于每一个数据都不同,甚至也成为一个目标变量。不是很容易理解)

image

 

 

 

现在soft-margin SVM的形式已经阐明,如何来解?

1.根据之前我们在hard-margin SVM中推导过的求解对偶问题的过程,可以得到如下结果,同时还有KKT condition中的primal-innner optimal(complementary slackness)。

image

求解:

image

image

image

image

这里的问题是b如何求得?根据之前的primal-innner optimal 条件:

image

 

至此,soft-margin SVM的求解过程结束

之前hard-margin我们将所有的数据点根据α的值,分为支持向量和一般向量。
现在soft-margin中,α有三种情况,可以分成三类:

image

 

 

对于高斯核函数,如何选择适当的C和γ?

可以使用validation。同时也可以使用#SV,因为:

image

使用两者进行选择的区别如下:

imageimage

转载于:https://www.cnblogs.com/wangyanphp/p/5504478.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值