LintCode Coins in a Line III

本文介绍了一种硬币游戏的胜负判断策略,通过动态规划算法确定先手玩家是否能赢。给出了具体的状态转移方程及Java实现代码。

原题链接在这里:http://www.lintcode.com/en/problem/coins-in-a-line-iii/

题目:

There are n coins in a line. Two players take turns to take a coin from one of the ends of the line until there are no more coins left. The player with the larger amount of money wins.

Could you please decide the first player will win or lose?

Example

Given array A = [3,2,2], return true.

Given array A = [1,2,4], return true.

Given array A = [1,20,4], return false.

题解:

类似Coins in a Line II.

DP问题. 状态dp[l][r]第i到第j的硬币时,先手去硬币的人最后最多去硬币价值.

转移方程, pickLeft = min(dp[l+2][r], dp[l+1][r-1])+values[l]

     pickRight = min(dp[l][r-2], dp[l-1][r-1])+values[r]

     dp[l][r] = max(pickLeft, pickRight)

初始化l == r时, dp[l][r] = values[l]

        l+1 == r时, dp[l][r] = max(values[l], values[l+1])

答案dp[0][values.length-1] > sum/2

Time Complexity: O(n^2), 有n^2个状态需要去计算. Space: O(n^2).

AC Java:

 1 public class Solution {
 2     /**
 3      * @param values: an array of integers
 4      * @return: a boolean which equals to true if the first player will win
 5      */
 6     public boolean firstWillWin(int[] values) {
 7         if(values == null || values.length == 0){
 8             return false;
 9         }
10         
11         int n = values.length;
12         int [][] dp = new int[n][n];
13         boolean [][] used = new boolean[n][n];
14         int sum = 0;
15         for(int val : values){
16             sum += val;
17         }
18         return sum < 2*memorySearch(values, 0, values.length-1, dp, used);
19     }
20     
21     private int memorySearch(int [] values, int l, int r, int [][] dp, boolean [][] used){
22         if(used[l][r]){
23             return dp[l][r];
24         }
25         used[l][r] = true;
26         if(l>r){
27             dp[l][r] = 0;
28         }else if(l == r){
29             dp[l][r] = values[l];
30         }else if(l + 1 == r){
31             dp[l][r] = Math.max(values[l], values[l+1]);
32         }else{
33             int pickLeft = Math.min(memorySearch(values, l+2, r, dp, used), memorySearch(values, l+1, r-1, dp, used)) + values[l];
34             int pickRight = Math.min(memorySearch(values, l+1, r-1, dp, used), memorySearch(values, l, r-2, dp, used)) + values[r];
35             dp[l][r] = Math.max(pickLeft, pickRight);
36         }
37         return dp[l][r];
38     }
39 }

 

转载于:https://www.cnblogs.com/Dylan-Java-NYC/p/6410366.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值