LintCode Coins in a Line

本文探讨了一个经典的博弈论问题——取币游戏。通过动态规划的方法解决了两人轮流从一排硬币中取走一枚或两枚的问题,目的是决定先手玩家是否会赢得比赛。文章提供了详细的算法思路和Java实现。

原题链接在这里:http://www.lintcode.com/en/problem/coins-in-a-line/

题目:

There are n coins in a line. Two players take turns to take one or two coins from right side until there are no more coins left. The player who take the last coin wins.

Could you please decide the first play will win or lose?

Example

n = 1, return true.

n = 2, return true.

n = 3, return false.

n = 4, return true.

n = 5, return true.

题解:

类似Nim Game. 这道题其实是DP, 后面还有进阶题.

状态 还剩i个coin时先手的人是赢是输.

转移方程 dp[i] = (dp[i-2] && dp[i-3]) || (dp[i-3] && dp[i-4]).

初始化 dp[0] = false, dp[1] = true, dp[2] = true, dp[3] = false.

答案dp[n].

Time Complexity: O(n), 因为中间用了dp来记录中间值. Space: O(n), stack space.

AC Java:

 1 public class Solution {
 2     public boolean firstWillWin(int n) {
 3         int [] dp = new int[n+1];
 4         return memorySearch(n, dp);
 5     }
 6     
 7     private boolean memorySearch(int n, int [] dp){
 8         if(dp[n] != 0){
 9             return dp[n] == 2;
10         }
11         
12         if(n<=0 || n == 3){
13             dp[n] = 1;
14         }else if(n == 1 || n == 2){
15             dp[n] = 2;
16         }else{
17             if((memorySearch(n-2, dp) && memorySearch(n-3, dp)) 
18                 || (memorySearch(n-3, dp) && memorySearch(n-4, dp))){
19                     dp[n] = 2;
20                 }else{
21                     dp[n] = 1;
22                 }
23         }
24 
25         if(dp[n] == 2){
26             return true;
27         }else{
28             return false;
29         }
30     }
31 }

 跟上Coins in a Line II.

转载于:https://www.cnblogs.com/Dylan-Java-NYC/p/6406922.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值