bzoj2282

本文介绍了一种使用树的直径和单调队列解决特定路径问题的方法。通过双指针技巧,在保证路径长度不超过给定值的情况下找到树中两点间最大距离。采用两次宽度优先搜索确定树的直径,并利用单调队列优化算法至线性时间复杂度。

 

树的直径+单调队列

这竟然和bzoj1999是一样的?

我们yy一下,发现这条路径肯定在树的直径上,然后就好办了,我们维护一个双指针,保证长度<=s,然后最大距离就是直径的两端到路径的两端的最大值,还有当前路径上挂着的链,这个我们dfs一下就行了,然后直径两端的最大值直接求就行了,链的最大值维护一个单调队列,那么就可以O(n)出解了,求直径用两次bfs

bzoj1999卡到rank1了!

bzoj2282rank2!

#include<bits/stdc++.h>
using namespace std;
const int N = 500010;
struct edge {
    int nxt, to, w;
} e[N << 1];
int n, cnt = 1, S, ans = 0x3f3f3f3f;
int d[N], route[N], head[N], vis[N], dis[N], dep[N], q[N], last[N];
namespace IO 
{
    const int Maxlen = N * 50;
    char buf[Maxlen], *C = buf;
    int Len;
    inline void read_in()
    {
        Len = fread(C, 1, Maxlen, stdin);
        buf[Len] = '\0';
    }
    inline void fread(int &x) 
    {
        x = 0;
        int f = 1;
        while (*C < '0' || '9' < *C) { if(*C == '-') f = -1; ++C; }
        while ('0' <= *C && *C <= '9') x = (x << 1) + (x << 3) + *C - '0', ++C;
        x *= f;
    }
    inline void read(int &x)
    {
        x = 0;
        int f = 1; char c = getchar();
        while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { x = (x << 1) + (x << 3) + c - '0'; c = getchar(); }
        x *= f;
    }
    inline void read(long long &x)
    {
        x = 0;
        long long f = 1; char c = getchar();
        while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { x = (x << 1ll) + (x << 3ll) + c - '0'; c = getchar(); }
        x *= f;
    } 
} using namespace IO;
void link(int u, int v, int w)
{
    e[++cnt].nxt = head[u];
    head[u] = cnt;
    e[cnt].to = v;
    e[cnt].w = w;
}
int bfs(int s)
{
    int ret = s, l = 1, r = 0;
    d[s] = 0;
    q[++r] = s;
    last[s] = 0;
    while(l <= r)
    {
        int u = q[l++];
        for(int i = head[u]; i; i = e[i].nxt) if(e[i].to != e[last[u] ^ 1].to)
        {
            d[e[i].to] = d[u] + e[i].w;
            if(d[e[i].to] > d[ret]) ret = e[i].to;
            q[++r] = e[i].to;
            last[e[i].to] = i;
        }
    }
    return ret;
}
int dfs(int u)
{
    int ret = 0;
    vis[u] = 1;
    for(int i = head[u]; i; i = e[i].nxt) if(!vis[e[i].to]) ret = max(ret, dfs(e[i].to) + e[i].w);
    return ret; 
}
int main()
{
    read_in();
    fread(n);
    fread(S);
    for(int i = 1; i < n; ++i)
    {
        int u, v, w;
        fread(u);
        fread(v);
        fread(w);
        link(u, v, w);
        link(v, u, w);
    }
    int s = bfs(1), t = bfs(s), now = t, p = 0, l = 1, r = 0;
    while(now != s) route[++route[0]] = now, vis[now] = 1, now = e[last[now] ^ 1].to;
    route[++route[0]] = s;
    vis[s] = 1;
    for(int i = 1; i <= route[0]; ++i) 
    {
        int tmp = i == 1 ? 0 : e[last[route[i - 1]]].w;
        dis[i] = dis[i - 1] + tmp;
        dep[i] = dfs(route[i]);
    }   
    for(int i = 1; i <= route[0]; ++i)
    {
        int mx = dis[i];
        while(l <= r && q[l] < i) ++l;
        while(dis[p + 1] - dis[i] <= S && p < route[0]) 
        {
            ++p;    
            while(l <= r && dep[p] > dep[q[r]]) --r;
            q[++r] = p;
        }
        mx = max(mx, max(dis[route[0]] - dis[p], dep[q[l]]));
        ans = min(ans, mx); 
    }
    printf("%d\n", ans);
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/19992147orz/p/7529941.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值