Let's call an array A
a mountain if the following properties hold:
A.length >= 3
- There exists some
0 < i < A.length - 1
such thatA[0] < A[1] < ... A[i-1] < A[i] > A[i+1] > ... > A[A.length - 1]
Given an array that is definitely a mountain, return any i
such that A[0] < A[1] < ... A[i-1] < A[i] > A[i+1] > ... > A[A.length - 1]
.
Example 1:
Input: [0,1,0]
Output: 1
Example 2:
Input: [0,2,1,0]
Output: 1
Note:
3 <= A.length <= 10000
0 <= A[i] <= 10^6
- A is a mountain, as defined above.
Approach #1: Binary Search.
class Solution {
public:
int peakIndexInMountainArray(vector<int>& A) {
int n = A.size();
int l = 0;
int r = n-1;
while (l <= r) {
int m = l + (r - l) / 2;
if (A[m-1] < A[m] && A[m] > A[m+1]) return m;
else if (A[m-1] < A[m] && A[m+1] > A[m]) l = m + 1;
else r = m - 1;
}
return -1;
}
};
Runtime: 12 ms, faster than 53.74% of C++ online submissions for Peak Index in a Mountain Array.