[COGS 2287][HZOI 2015]疯狂的机器人

本文探讨了一个机器人从原点出发,在二维平面上通过有限次移动后返回原点的不同路径数量问题。移动包括向上、下、左、右及静止五种方式,且不能进入负坐标区域。通过对Catalan数的应用和快速傅里叶变换优化计算,提供了一种高效的解决方案。

Description

题库链接

现在在二维平面内原点上有一只机器人,他每次可以选择向右走,向左走,向下走,向上走和不走(每次如果走只能走一格)。机器人不能走到横坐标是负数或者纵坐标是负数的点上。

给定操作次数 \(n\) ,求有多少种不同的操作序列使得机器人在操作后会回到原点,输出答案模 \(998244353\) 后的结果。

\(1\leq n\leq 100000\)

Solution

应该不难想吧...

显然我们先考虑前四种走法...不走的情况可以组合数求出来。

对于一类操作(向上向下或向左向右),显然是成组出现的。更具体地,这就是 \(Catalan\) 数。

\(Catalan\) 数的第 \(i\) 项为 \(C_i\)

记多项式

\[A(x)=\sum_{i=0}^\infty \frac{[2\mid i]\cdot C_{\left\lfloor\frac{i}{2}\right\rfloor}}{i!}x^i\]

那么答案就是 \(\sum_{i=0}^n [2\mid i]\cdot i!\cdot A^2(i)\cdot {n\choose i}\)\(\text{NTT}\) 优化即可 。

Code

#include <bits/stdc++.h>
using namespace std;
const int N = 4*100000, yzh = 998244353;

int n, inv[N+5], fac[N+5], ifac[N+5], a[N+5], len, R[N+5], L;

int quick_pow(int a, int b) {
    int ans = 1;
    while (b) {
    if (b&1) ans = 1ll*ans*a%yzh;
    b >>= 1, a = 1ll*a*a%yzh;
    }
    return ans;
}
void NTT(int *A, int o) {
    for (int i = 0; i < len; i++) if (i < R[i]) swap(A[i], A[R[i]]);
    for (int i = 1; i < len; i <<= 1) {
    int gn = quick_pow(3, (yzh-1)/(i<<1)), x, y;
    if (o == -1) gn = quick_pow(gn, yzh-2);
    for (int j = 0; j < len; j += (i<<1)) {
        int g = 1;
        for (int k = 0; k < i; k++, g = 1ll*g*gn%yzh) {
        x = A[j+k], y = 1ll*g*A[j+k+i]%yzh;
        A[j+k] = (x+y)%yzh, A[j+k+i] = (x-y)%yzh;
        }
    }
    }
}
int C(int n, int m) {return 1ll*fac[n]*ifac[m]%yzh*ifac[n-m]%yzh; }
void work() {
    scanf("%d", &n); inv[0] = inv[1] = fac[0] = ifac[0] = 1;
    for (int i = 1; i <= n; i++) fac[i] = 1ll*i*fac[i-1]%yzh;
    for (int i = 2; i <= n+1; i++) inv[i] = -1ll*yzh/i*inv[yzh%i]%yzh;
    for (int i = 1; i <= n; i++) ifac[i] = 1ll*inv[i]*ifac[i-1]%yzh;
    for (int i = 0; i <= n; i += 2) a[i] = 1ll*C(i, i/2)*inv[i/2+1]%yzh*ifac[i]%yzh;
    for (len = 1; len <= (n<<1); len <<= 1) ++L;
    for (int i = 0; i < len; i++) R[i] = (R[i>>1]>>1)|((i&1)<<(L-1));
    NTT(a, 1);
    for (int i = 0; i < len; i++) a[i] = 1ll*a[i]*a[i]%yzh;
    NTT(a, -1);
    for (int i = 0, inv = quick_pow(len, yzh-2); i < len; i++)
    a[i] = 1ll*a[i]*inv%yzh*fac[i]%yzh;
    int ans = 0;
    for (int i = 0; i <= n; i += 2)
    (ans += 1ll*a[i]*C(n, i)%yzh) %= yzh;
    printf("%d\n", (ans+yzh)%yzh);
}
int main() {work(); return 0; }

转载于:https://www.cnblogs.com/NaVi-Awson/p/8727818.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值