1. 迹(trace)
矩阵的迹(trace)表示矩阵 AAA 主对角线所有元素的和,即
tr(A)=a11+a22+⋯+ann\text{tr}(A)=a_{11}+a_{22}+\dots+a_{nn}tr(A)=a11+a22+⋯+ann
性质:
(1) tr(A)=tr(AT)tr(A)=tr(A^T)tr(A)=tr(AT)
(2) tr(AB)=tr(BA)tr(AB)=tr(BA)tr(AB)=tr(BA)
(3) tr(ABC)=tr(BCA)=tr(CAB)tr(ABC)=tr(BCA)=tr(CAB)tr(ABC)=tr(BCA)=tr(CAB) 循环性
(4) 若 AAA 与 BBB 相似,则 tr(A)=tr(B)tr(A)=tr(B)tr(A)=tr(B),因为 tr(A)=tr(PBP−)=tr(PP−B)=tr(B)tr(A)=tr(PBP^{-})=tr(PP^-B)=tr(B)tr(A)=tr(PBP−)=tr(PP−B)=tr(B)
2. 行列式(determinant)
矩阵 AAA 的行列式值记为 det(A)\text{det}(A)det(A)。
它的性质:
(1) det(A)=det(AT)det(A)=det(A^T)det(A)=det(AT)
(2) det(A)=1/det(A−)det(A)=1/det(A^-)det(A)=1/det(A−)
(3) det(AB)=det(B)det(A)det(AB)=det(B)det(A)det(AB)=det(B)det(A)
(4) 若 AAA 与 BBB 相似,则 det(A)=det(B)det(A)=det(B)det(A)=det(B)