概率论05 离散分布

  我们已经知道什么是离散随机变量。离散随机变量只能取有限的数个离散值,比如投掷一个撒子出现的点数为随机变量,可以取1,2,3,4,5,6。每个值对应有发生的概率,构成该离散随机变量的概率分布。

  离散随机变量有很多种,但有一些经典的分布经常重复出现。对这些经典分布的研究,也占据了概率论相当的一部分篇幅。我们将了解一些离散随机变量的经典分布,了解它们的含义和特征。 

 

伯努利分布

  伯努利分布(Bernoulli distribution)是很简单的离散分布。在伯努利分布下,随机变量只有两个可能的取值: 1和0。随机变量取值1的概率为p。相应的,随机变量取值0的概率为1-p。因此,伯努利分布可以表示成:

 

  投掷一次硬币,出现正面,记录为1,出现背面,记录为0。这样我们就有一个伯努利随机变量。如果硬币是均匀的,那么p=0.5如果硬币是不均匀的,比如硬币出现正面的概率为0.8,那么p=0.8,我们可以绘制此分布如下:

 

二项分布

  为了理解二项分布是如何出现的,我们假设下面情况:进行n次独立测试,每次测试成功的概率为p(相应的,失败的概率为1-p)。这n次测试中的“成功次数”是一个随机变量。这个随机变量符合二项分布(binomial distribution)。

  二项分布可以从计数的角度来理解。n次测试,如果随机变量为k,意味着其中的k次成功,n-k次失败。从n次实验中挑选k个,根据计数原理,共有

种可能。其中的每种可能出现的概率为。因此,二项分布可以表示成为:

 

(“二项分布”的命名原因是,上面的P(X=k)等于二项式二项式展开的第k项。)

 

  我们进行连续的10次打靶,如果每次中靶的概率为0.7, 那么在10次打靶中,打中靶的次数就是一个符合二项分布的随机变量。在这样的假设下n=10,p=0.7,k可以取值从0到10之间的任意整数。

 

泊松分布

泊松

  泊松分布(Poisson distribution)是二项分布的一种极限情况,当,而时,二项分布趋近于泊松分布。这意味着我们进行无限多次测试,每次成功概率无穷小,但n和p的乘积是一个有限的数值。

  泊松分布用于模拟低概率事件,比如地震。地震是很低概率的事件,我们想知道一段时间,比如十年内某地发生地震的总数,可以将十年划分为n个小时间段,每个时间段内地震发生的概率为p。我们假设小时间段很短,以致于不可能有两次地震发生在同一小时间段内,那么地震的总数是一个随机变量,趋近于泊松分布。

  泊松分布的关键特征是,随机变量的取值与区间的长短成正比。这里的区间是广义的,它既可以表示时间,也可以表示空间。泊松分布有一个参数λ,我们可以将泊松分布写成如下形式:

 

k=0,1,2,...

λ=1和λ=5的泊松分布如下:

  可以看到,λ决定了泊松分布的“重心”所在。比如地震的例子中,λ越大,k取大值的可能性越大,越有可能发生更多次的地震。我们将在统计中看到,如何利用观测的数据,来估计λ的取值。

 

几何分布

  假设我们连续进行独立测试,直到测试成功。每次测试成功的概率为p。那么,到我们成功时,所进行的测试总数是一个随机变量,可以取值1到正无穷。这样一个随机变量符合几何分布(geometric distribution)。

  随机变量取值为k时,意味前面的k-1次都失败了。因此,我们可以将几何分布表示成:

 

k=1,2,...

  假设我们进行产品检验。产品的合格率为0.65。我们需要检验k次才发现第一个合格产品,k的分布表示如下:

 

可以看到,几何分布的概率质量函数呈递减趋势。我们也可以从表达式中得到该特征。

 

负二项分布

  几何分布实际上是负二项分布(negative geometric distribution)的一种特殊情况。几何分布是进行独立测试,直到出现成功,测试的总数。负二项分布同样是进行独立测试,但直到出现r次成功,测试的总数k。r=1时,负二项分布实际上就是几何分布。

  在连续的r次测试时,我们只需要保证最后一次测试是成功的,而之前的k-1次中,有r-1次成功。这r-1次成功的测试,可以任意存在于k-1次测试。因此,负二项分布的表达式为:

 

 

超几何分布

  一个袋子中有n个球,其中r个是黑球,n-r是白球,从袋中取出m个球,让X表示取出球中的黑球的个数,那么X是一个符合超几何分布(hypergeometric distribution)的随机变量。

转载于:https://www.cnblogs.com/xuekai-to-sharp/p/3638712.html

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 在 Android 开发中,Fragment 是界面的一个模块化组件,可用于在 Activity 中灵活地添加、删除或替换。将 ListView 集成到 Fragment 中,能够实现数据的动态加载与列表形式展示,对于构建复杂且交互丰富的界面非常有帮助。本文将详细介绍如何在 Fragment 中使用 ListView。 首先,需要在 Fragment 的布局文件中添加 ListView 的 XML 定义。一个基本的 ListView 元素代码如下: 接着,创建适配器来填充 ListView 的数据。通常会使用 BaseAdapter 的子类,如 ArrayAdapter 或自定义适配器。例如,创建一个简单的 MyListAdapter,继承自 ArrayAdapter,并在构造函数中传入数据集: 在 Fragment 的 onCreateView 或 onActivityCreated 方法中,实例化 ListView 和适配器,并将适配器设置到 ListView 上: 为了提升用户体验,可以为 ListView 设置点击事件监听器: 性能优化也是关键。设置 ListView 的 android:cacheColorHint 属性可提升滚动流畅度。在 getView 方法中复用 convertView,可减少视图创建,提升性能。对于复杂需求,如异步加载数据,可使用 LoaderManager 和 CursorLoader,这能更好地管理数据加载,避免内存泄漏,支持数据变更时自动刷新。 总结来说,Fragment 中的 ListView 使用涉及布局设计、适配器创建与定制、数据绑定及事件监听。掌握这些步骤,可构建功能强大的应用。实际开发中,还需优化 ListView 性能,确保应用流畅运
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值