codeforces 545c

本文介绍了一个关于树木砍伐的问题,通过贪心算法和动态规划两种方法进行解答,旨在找到能够被砍伐的最大树木数量。
C. Woodcutters
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Little Susie listens to fairy tales before bed every day. Today's fairy tale was about wood cutters and the little girl immediately started imagining the choppers cutting wood. She imagined the situation that is described below.

There are n trees located along the road at points with coordinates x1, x2, ..., xn. Each tree has its height hi. Woodcutters can cut down a tree and fell it to the left or to the right. After that it occupies one of the segments [xi - hi, xi] or [xi;xi + hi]. The tree that is not cut down occupies a single point with coordinate xi. Woodcutters can fell a tree if the segment to be occupied by the fallen tree doesn't contain any occupied point. The woodcutters want to process as many trees as possible, so Susie wonders, what is the maximum number of trees to fell.

Input

The first line contains integer n (1 ≤ n ≤ 105) — the number of trees.

Next n lines contain pairs of integers xi, hi (1 ≤ xi, hi ≤ 109) — the coordinate and the height of the і-th tree.

The pairs are given in the order of ascending xi. No two trees are located at the point with the same coordinate.

Output

Print a single number — the maximum number of trees that you can cut down by the given rules.

Examples
input
5
1 2
2 1
5 10
10 9
19 1
output
3
input
5
1 2
2 1
5 10
10 9
20 1
output
4
Note

In the first sample you can fell the trees like that:

  • fell the 1-st tree to the left — now it occupies segment [ - 1;1]
  • fell the 2-nd tree to the right — now it occupies segment [2;3]
  • leave the 3-rd tree — it occupies point 5
  • leave the 4-th tree — it occupies point 10
  • fell the 5-th tree to the right — now it occupies segment [19;20]

In the second sample you can also fell 4-th tree to the right, after that it will occupy segment [10;19]

这道题目的意思为:输入树的总数n,然后分别输入树的位置position和树高height,树可以左倒或者右倒,但树顶不能到达旁边树的根部,计算可以砍倒的树的数目最大是多少。

1.用贪心的思想:

优先向左倒,向右倒的时候更新两棵树的距离。

#include<iostream>
#define MAXN 100005
using namespace std;
typedef long long ll;
ll root[MAXN];
ll height[MAXN];
ll dist[MAXN];
int main()
{
    int n;
    while (cin >> n)
    {
        int sum = 2;
        if (n == 1)
        {
            cout << '1' << endl;
            return 0;
        }
        for (int i = 0;i < n;i++)
            cin >> root[i] >> height[i];
        for (int i = 1;i < n;i++)
            dist[i] = root[i] - root[i-1];
        dist[0] = 0;
        for (int i = 1;i < n - 1;i++)
        {
            if (height[i] < dist[i])
                sum++;
            else if (height[i] >= dist[i] && height[i] < dist[i + 1])
            {
                sum++;
                dist[i + 1]-=height[i];
            }
        }
        cout << sum << endl;
    }
    return 0;
}

2:动态规划

dp[i][0]表示不砍倒,

dp[i][1]表示向左倒,

dp[i][2]表示向右倒,

dp[i][0] = max(dp[i - 1][0], dp[i - 1][1], dp[i - 1][2])

左倒的时候分两种:前一棵树加现在这棵树的高度小于两棵树的距离和前一棵树加现在这棵树的高度大于两棵树的距离。

小于:dp[i][1] = max(dp[i - 1][0], dp[i - 1][1], dp[i - 1][2])+1

大于:dp[i][1] = max(dp[i - 1][0], dp[i - 1][1])+1

dp[i][2] = max(dp[i - 1][0], dp[i - 1][1], dp[i - 1][2]) + 1

#include<iostream>
#include<algorithm>
#define MAXN 100005
typedef long long ll;
using namespace std;
ll position[MAXN];
ll height[MAXN];
int dp[MAXN][3];
int main()
{
    int n;
    while (cin >> n)
    {
        for (int i = 0;i < n;i++)
            cin >> position[i] >> height[i];
        if (n == 1)
        {
            cout << '1' << endl;
            return 0;
        }
        dp[0][0] = 0;
        dp[0][1] = 1;
        if (position[1] - position[0] > height[0])
            dp[0][2] = 1;
        else
            dp[0][2] = 0;
        for (int i = 1;i < n-1;i++)
        {
            dp[i][0] = max(max(dp[i - 1][0], dp[i - 1][1]), dp[i - 1][2]);
            if (height[i] < position[i] - position[i - 1])
                dp[i][1] = max(dp[i - 1][0], dp[i - 1][1]) + 1;
            if (height[i] + height[i - 1] < position[i] - position[i - 1])
                dp[i][1] = max(dp[i][1] - 1, dp[i - 1][2]) + 1;
            if (height[i] < position[i + 1] - position[i])
                dp[i][2] = max(max(dp[i - 1][0], dp[i - 1][1]), dp[i - 1][2]) + 1;
        }
        cout << max(max(dp[n - 2][0], dp[n - 2][1]), dp[n - 2][2]) + 1 << endl;
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/chenruijiang/p/8366359.html

### Codeforces Problem 1332C Explanation The provided references pertain specifically to problem 742B on Codeforces rather than problem 1332C. For an accurate understanding and solution approach for problem 1332C, it's essential to refer directly to its description and constraints. However, based on general knowledge regarding competitive programming problems found on platforms like Codeforces: Problem 1332C typically involves algorithmic challenges that require efficient data structures or algorithms such as dynamic programming, graph theory, greedy algorithms, etc., depending upon the specific nature of the task described within this particular question[^6]. To provide a detailed explanation or demonstration concerning **Codeforces problem 1332C**, one would need direct access to the exact statement associated with this challenge since different tasks demand tailored strategies addressing their unique requirements. For obtaining precise details about problem 1332C including any sample inputs/outputs along with explanations or solutions, visiting the official Codeforces website and navigating to contest number 1332 followed by examining section C is recommended. ```python # Example pseudo-code structure often seen in solving competitive coding questions. def solve_problem_1332C(input_data): # Placeholder function body; actual logic depends heavily on the specifics of problem 1332C. processed_result = process_input(input_data) final_answer = compute_solution(processed_result) return final_answer input_example = "Example Input" print(solve_problem_1332C(input_example)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值