Manacher

Manacher算法详解
本文深入解析了Manacher算法,一种高效求解字符串中最大回文子串问题的算法。通过对比暴力解法,Manacher算法将时间复杂度从O(n^2)降低至O(n),并详细介绍了算法背后的原理,包括回文半径数组、最右回文半径及其实现过程中的四种情况。代码示例使用Java实现。

文章参考:https://segmentfault.com/a/1190000008484167

江湖人称:马拉车算法

解决的问题:求一个字符串中的最长回文。

暴力的方法:遍历字符串,以当前字符为中心,向两边扩展直至不是回文。时间复杂度O(n^2)

Manacher算法:是记录并利用以前遍历过的回文,巧妙的达到一个加速的效果。时间复杂度O(n)

首先了解三个概念:

(1)回文半径数组:已求的回文的半径存储起来,为后面可以起到加速效果,避免重复的运算。

(2)最右回文半径:已求出来的回文中,最右边的回文半径

(3)最右回文半径的中心:顾名思义

图解一下流程:

C:是最右回文半径的中心,R:已经求出的最右回文半径的位置点,L:R关于C的对称点。

i:为当前遍历的下标位置,i' :关于C的对称点(前面遍历,已经求出来的回文半径)。

第一种情况:i' 的回文都在(L~R里面,直接得到 i 的回文半径就是 i' 的回文半径。如下图:

第二种情况:i' 的回文超出了(L~R)范围,部分在外面,直接得到 i 的回文半径就是 i 到 R的距离。如下图:

第三种情况:i' 的回文半径左边位置恰好与 L 重合i 就从R边界开始,向外扩,得到 i 的回文半径。

第四种情况:是 i 在 R 的右边,不在(L ~ R)的里面。方法是暴力向外扩。

以上就是所有的情况。

代码:

package basic_class_02;

public class Code_04_Manacher {

	public static char[] manacherString(String str) {
		char[] charArr = str.toCharArray();
		char[] res = new char[str.length() * 2 + 1];
		int index = 0;
		for (int i = 0; i != res.length; i++) {
			res[i] = (i & 1) == 0 ? '#' : charArr[index++];
		}
		return res;
	}

	public static int maxLcpsLength(String str) {
		if (str == null || str.length() == 0) {
			return 0;
		}
		char[] charArr = manacherString(str);
		int[] pArr = new int[charArr.length]; // 存储回文半径
		int index = -1;    // 最右回文边界的中心点
		int pR = -1;   // 最右回文边界
		int max = Integer.MIN_VALUE;
		for (int i = 0; i != charArr.length; i++) {
			pArr[i] = pR > i ? Math.min(pArr[2 * index - i], pR - i) : 1;
			while (i + pArr[i] < charArr.length && i - pArr[i] > -1) {
				if (charArr[i + pArr[i]] == charArr[i - pArr[i]])
					pArr[i]++;
				else {
					break;
				}
			}
			if (i + pArr[i] > pR) {
				pR = i + pArr[i];
				index = i;
			}
			max = Math.max(max, pArr[i]);
		}
		return max - 1;
	}

	public static void main(String[] args) {
		String str1 = "abc1234321ab";
		System.out.println(maxLcpsLength(str1));
	}

}

 

转载于:https://www.cnblogs.com/horken/p/10706117.html

<think>嗯,用户想要了解Manacher算法的代码模板或者实现示例。首先,我需要回忆一下Manacher算法的基本思路。记得这个算法是用来找出字符串中最长回文子串的,时间复杂度是线性的O(n)。用户可能已经了解过暴力解法或者其他的优化方法,但想看看具体的代码实现。 首先,用户提到的几个引用中有提到Manacher算法是在BF算法基础上优化的,所以可能需要先简要说明一下这个算法的核心思想。比如预处理字符串,插入特殊字符(比如#)来统一处理奇偶长度的回文,以及利用对称性来减少重复计算。 接下来,用户需要代码模板。根据引用中的示例,比如引用[2]和[4],这两个可能提供了不同的实现方式。需要整合这些代码,确保语法正确,并且符合用户要求的格式,比如独立公式用$$...$$,行内用$...$。不过用户的问题主要是代码示例,所以重点在代码部分。 需要注意的是,用户可能希望代码有注释,解释每一步的作用。比如预处理部分,插入字符,然后初始化变量如max_r和pos,然后遍历处理每个字符的位置。同时,在代码中处理三种情况:对称点的半径是否超过当前右边界,从而决定初始r[i]的值。然后扩展半径,直到无法继续扩展为止,最后更新max_r和pos的位置。 另外,引用[4]中的代码可能用的是另一种实现方式,比如使用辅助变量aux和len来计算半径。不过Manacher的标准实现通常使用一个数组p来记录每个中心的半径,以及维护当前最右的边界和对应的中心。需要确保代码的正确性,比如处理预处理后的字符串,以及最后计算原字符串中的起始位置和长度。 可能还需要比较不同引用的实现方式,选择最符合标准Manacher算法的代码模板。例如,引用[2]中的代码可能更接近标准模板,而引用[4]的代码可能更简略但效率可能不同。需要确保提供的代码是正确的,并且有足够的注释帮助用户理解。 另外,用户可能希望了解如何将预处理后的长度转换回原字符串的位置,比如在示例中的start和maxLen的计算。这部分需要详细解释,因为这是容易出错的地方。例如,预处理后的字符串长度是2n+1,所以原字符串中的起始位置是(start - maxLen)/2,长度是maxLen。 最后,生成相关问题的时候,需要围绕Manacher算法的不同方面,比如预处理的作用、时间复杂度的分析、与暴力解法的区别、应用场景等。这些问题可以帮助用户更深入理解算法。 在检查过程中,需要确保LaTeX格式的正确性,比如行内公式是否正确使用$符号,是否有遗漏。例如,在提到时间复杂度O(n)时,需要用$O(n)$。同时,独立公式如回文半径的计算可能需要用$$...$$,但根据用户示例,可能这部分不需要公式,主要代码展示。 总结步骤:1. 简要介绍Manacher算法;2. 提供代码模板,包括预处理、循环处理每个字符、扩展半径、更新变量;3. 解释代码中的关键步骤;4. 给出应用示例和结果转换;5. 生成相关问题。</think>### Manacher算法实现示例 Manacher算法用于在$O(n)$时间内查找最长回文子串,核心是通过对称性减少重复计算[^1]。以下是代码模板及关键步骤解释: #### 代码模板 ```python def manacher(s): # 预处理,插入特殊字符 t = '#' + '#'.join(s) + '#' n = len(t) p = [0] * n # 记录每个中心的回文半径 max_right = 0 # 当前最大右边界 center = 0 # 最大右边界的中心 max_len = 0 # 最长回文子串长度 start = 0 # 最长回文子串起始位置 for i in range(n): # 根据对称性初始化半径 if i < max_right: mirror = 2 * center - i p[i] = min(max_right - i, p[mirror]) # 尝试扩展半径 left = i - p[i] - 1 right = i + p[i] + 1 while left >= 0 and right < n and t[left] == t[right]: p[i] += 1 left -= 1 right += 1 # 更新最大右边界和对应中心 if i + p[i] > max_right: max_right = i + p[i] center = i # 更新最长回文记录 if p[i] > max_len: max_len = p[i] start = (i - max_len) // 2 # 转换为原字符串的位置 return s[start : start + max_len] ``` #### 关键步骤说明 1. **预处理**:将原字符串$s$转换为$t$,插入分隔符`#`统一奇偶长度回文处理[^2]。例如,`abc`变为`#a#b#c#`。 2. **半径初始化**:若当前点$i$在已知最大右边界内,则利用对称点$j=2 \cdot center - i$的半径初始化$p[i]$[^5]。 3. **扩展半径**:从$p[i]$的初始值出发,向左右扩展,直到字符不匹配。 4. **结果转换**:最长回文子串在原字符串中的起始位置为$(i - max\_len) // 2$,长度为$max\_len$[^4]。 #### 示例运行 输入`abc1234321ab`,预处理后字符串为`#a#b#c#1#2#3#4#3#2#1#a#b#`。算法计算得到最长回文子串为`23432`,对应原字符串的起始位置和长度[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值