主要利用PICK定理与边点数上的GCD的关系求解。
三角形一条边上的所有整数点(包括顶点)可以首先将这条边移到(0, 0)->(x, y)。这时,(x/gcd(x, y), y/gcd(x, y))肯定在这条边上,并且是整数点,其余所有整数点的可以表示为k(x/gcd(x, y), y/gcd(x, y))。所以所有的整数点个数为gcd(x, y) + 1。即:
b = gcd(x, y) + 1
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int MAX=110;
struct point {
double x,y;
}p[MAX];
int n;
int gcd(int x,int y){
while(y){
int tmp=y;
y = x % y;
x = tmp;
}
return x;
}
int main(){
int t; int cas=0;
cin>>t;
while(t--){
cas++;
cin>>n;
double tx,ty;
for(int i=0;i<n;i++){
cin>>tx>>ty;
if(i==0){
p[i].x=tx; p[i].y=ty;
}
else{
p[i].x=p[i-1].x+tx;
p[i].y=p[i-1].y+ty;
}
}
p[n]=p[0];
double ans=0;
for(int i=0;i<n;i++)
ans+=(p[i].x*p[i+1].y-p[i].y*p[i+1].x);
ans=(ans)/2;
int edg=0,in=0;
for(int i=0;i<n;i++)
edg+=gcd(abs((int)(p[i].x-p[i+1].x)),abs(int(p[i].y-p[i+1].y)));
in=(((ans+1)*2-edg)/2);
printf("Scenario #%d:\n",cas);
printf("%d %d %.1lf\n",in,edg,ans);
printf("\n");
}
return 0;
}