UVA - 11181 Probability|Given (条件概率)

本文介绍了一种使用二进制枚举的方法来解决特定条件概率问题,即已知每个人购物概率及固定人数购物的情况下,求各人购物的条件概率。

题意:有n个人,已知每个人买东西的概率,求在已知r个人买了东西的条件下每个人买东西的概率。

分析:二进制枚举个数为r的子集,按定义求即可。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define lowbit(x) (x & (-x))
const double eps = 1e-8;
inline int dcmp(double a, double b){
    if(fabs(a - b) < eps) return 0;
    return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 20 + 10;
const int MAXT = 10000 + 10;
using namespace std;
double p[MAXN];
bool vis[MAXN];
double ans[MAXN];
int N, r;
double solve(){
    double sum = 1;
    for(int i = 0; i < N; ++i){
        if(vis[i]) sum *= p[i];
        else sum *= (1 - p[i]);
    }
    for(int i = 0; i < N; ++i){
        if(vis[i]){
            ans[i] += sum;
        }
    }
    return sum;
}
int main(){
    int kase = 0;
    while(scanf("%d%d", &N, &r) == 2){
        if(!N && !r) return 0;
        memset(ans, 0, sizeof ans);
        for(int i = 0; i < N; ++i){
            scanf("%lf", &p[i]);
        }
        double sum = 0;
        for(int i = 0; i < (1 << N); ++i){
            memset(vis, false, sizeof vis);
            int cnt = 0;
            for(int j = 0; j < N; ++j){
                if(i & (1 << j)){
                    ++cnt;
                    vis[j] = true;
                }
            }
            if(cnt == r){
                sum += solve();
            }
        }
        printf("Case %d:\n", ++kase);
        for(int i = 0; i < N; ++i){
            printf("%.6f\n", ans[i] / sum);
        }
    }
    return 0;
}

  

转载于:https://www.cnblogs.com/tyty-Somnuspoppy/p/7241801.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值