POJ_1050_To the Max

本文介绍了一种解决最大子矩阵和问题的有效算法。通过计算每列的前缀和,可以快速得出任意两行间单列的和,再利用一维最大子串和的动态规划方法求解最大子矩阵和。
To the Max
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 49811 Accepted: 26400

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
As an example, the maximal sub-rectangle of the array: 

0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
is in the lower left corner: 

9 2 
-4 1 
-1 8 
and has a sum of 15. 

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2

Sample Output

15

Source

 
  • 最大子矩阵和
  • 是一维的最大子串和的二维扩展
  • 那我们把每列做一个前缀和,O1得到从i行到j行单列的和,之后用最大子串和dp求解就行

 

 1 #include <iostream>
 2 #include <string>
 3 #include <cstdio>
 4 #include <cstring>
 5 #include <algorithm>
 6 #include <climits>
 7 #include <cmath>
 8 #include <vector>
 9 #include <queue>
10 #include <stack>
11 #include <set>
12 #include <map>
13 using namespace std;
14 typedef long long           LL ;
15 typedef unsigned long long ULL ;
16 const int    maxn = 1e2 + 10   ;
17 const int    inf  = 0x3f3f3f3f ;
18 const int    npos = -1         ;
19 const int    mod  = 1e9 + 7    ;
20 const int    mxx  = 100 + 5    ;
21 const double eps  = 1e-6       ;
22 const double PI   = acos(-1.0) ;
23 
24 int n, ans, a[maxn][maxn], b[maxn], c[maxn][maxn];
25 int main(){
26     // freopen("in.txt","r",stdin);
27     // freopen("out.txt","w",stdout);
28     while(~scanf("%d",&n)){
29         ans=-inf;
30         memset(c,0,sizeof(c));
31         for(int i=1;i<=n;i++)
32             for(int j=1;j<=n;j++){
33                 scanf("%d",&a[i][j]);
34                 c[i][j]=c[i-1][j]+a[i][j];
35             }
36         for(int i=1;i<=n;i++){
37             for(int j=i;j<=n;j++){
38                 b[0]=0;
39                 for(int k=1;k<=n;k++){
40                     if(b[k-1]>=0){
41                         b[k]=b[k-1]+c[j][k]-c[i-1][k];
42                     }else{
43                         b[k]=c[j][k]-c[i-1][k];
44                     }
45                     ans=max(ans,b[k]);
46                 }
47             }
48         }
49         printf("%d\n",ans);
50     }
51     return 0;
52 }

 

 

 

转载于:https://www.cnblogs.com/edward108/p/7645978.html

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值