图的连通性算法-Kosaraju

本文深入探讨了Kosaraju算法,一种用于查找有向图强连通分量的线性时间算法。通过定义反图概念,文章阐述了算法的核心思想:先对原图进行深度优先搜索并记录后序数,再利用此信息对反图进行搜索,从而高效识别强连通分量。

Kosaraju算法

适用范围及时间复杂度

线性时间算法,找一个有向图的强连通分量(分量中所有点都是连通的)。

算法原理

首先有一个定义,名曰反图。何为反图?即将图中所有边反向操作。

上图样例即为一对反图。在整副图中,有三个强连通分量,即:1 2 5,3,4.如果把这副图所有边反向后,得到的同样是三个强连通分量。

即原图和反图的强连通分量的数量和每个强连通分量中的元素都是一样的,只是顺序不一样。

核心思想

先对原图进行DFS(深度优先搜索),保存每个节点退出DFS的次序,即后序数。

然后再用后序数最大点为顶点作为始点,对反图进行DFS。如此反复,直到访问完反图的所有节点为止。

把每一次对反图进行DFS所产生的顶点进行标号,即这些顶点为同一个强分支。

代码实现

这里以int cnt表示分支标号,每个点所属的分支标号用num[MAXN]记录。

用vect[MAXN]来存放后序。

    for(int i=n-1;i>=0;i--){
        if(!num[vect[i]]){//如果这个节点还没有被标号 
            cnt++;//创建新的分支 
            rdfs(vect[i]);//通过深搜把该分支节点标号 
        }
    }

void rdfs(int u){
    if(num[u]){
        return;
    }
    num[u]=cnt;
    for(int i=0;i<gt[u].size();i++){
        rdfs(gt[u][i]);
    }
} 

 

转载于:https://www.cnblogs.com/Uninstalllingyi/p/10459659.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值