51nod1135(求最小原根)

本文介绍了一种寻找给定质数P的最小原根的方法。通过理解原根及阶的概念,利用质数特性,将m-1进行质因数分解,并验证每个可能的原根a是否满足特定条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1135

 

题意:中文题诶~

 

思路:设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根。(其中φ(m)表示m的欧拉函数)给出1个质数P,找出P最小的原根。

我们先了解一下阶的概念:满足 a^r Ξ (1 mod m) ---1 的最小 r 即为 a%m的阶,我们可以直接从小到大枚举a, 然后将 r= φ(m) 带入进去,

判断如果满足  1式(即 a^x%m=1当且仅当 x=r 时成立)的话即为我们所求的答案。又因为输入的 m为质数,所以 r= φ(m)=m-1. 

判断对于当前 a,x=m-1 是否是 a^x%m=1---2 成立的唯一解我们不可能直接从正面枚举每个x,因为我们并不知道是否存在一个数 n, x>n时2式一定不成立,也就是我们不能确定枚举 x 的范围,那么枚举 x 也就无从谈起咯。不过还有有这样一个定理 对 (m-1) 只因分解成 m1, m2, m3....mk,若存在 x=(m-1)/mi 使得式2成立,那么

当前 a 不是 a mod m 的原根。所以我们就可以从反面枚举 x 啦,若当前 a 使得 x=(m-1)/mi (1<=i<=k)对于式2都不满足, 那么当前 a 即为所求解啦~

 

代码: 

 1 #include <bits/stdc++.h>
 2 #define ll long long
 3 #define MAXN 100
 4 using namespace std;
 5 
 6 ll prime[MAXN];
 7 int cnt=0;
 8 
 9 void make_prime(ll x){
10     for(int i=2; i*i<=x; i++){
11         if(x%i==0){
12             prime[cnt++]=i;
13             while(x%i==0){
14                 x/=i;
15             }
16         }
17     }
18     if(x>1){
19         prime[cnt++]=x;
20     }
21 }
22 
23 ll get_pow(ll x, int n, int mod){
24     ll ans=1;
25     while(n){
26         if(n&1){
27             ans=ans*x%mod;
28         }
29         x=x*x%mod;
30         n>>=1;
31     }
32     if(ans<0){
33         ans+=mod;
34     }
35     return ans;
36 }
37 
38 int main(void){
39     ll m;
40     scanf("%lld", &m);
41     make_prime(m-1);
42     for(int i=2; i<m; i++){
43         int flag=1;
44         for(int j=0; j<cnt; j++){
45             int x=(m-1)/prime[j];
46             if(get_pow(i, x, m)==1){
47                 flag=0;
48                 break;
49             }
50         }
51         if(flag){
52             printf("%d\n", i);
53             return 0;
54         }
55     }
56     return 0;
57 }

 

转载于:https://www.cnblogs.com/geloutingyu/p/6219868.html

题目 51nod 3478 涉及一个矩阵问题,要通过最少的操作次数,使得矩阵中至少有 `RowCount` 行和 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行和列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行和每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行和列组合**: - 由于 `N` 和 `M` 的最大值为 8,因此可以枚举所有可能的行组合和列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行和列需要修改,并且注意行和列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举和位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行和每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行和列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行和列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` 和 `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行和列的枚举组合以减少计算时间? 2. 在计算行和列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行和列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值