泊松回归(Poisson Regression)

泊松回归是一种预测整数值的统计模型,适用于计数数据。它基于泊松分布,参数可以通过最大似然估计求得。泊松回归在Behavior Targeting中用于估算用户的浏览和点击率,帮助计算CTR。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本博客已经迁往http://www.kemaswill.com/, 博客园这边也会继续更新, 欢迎关注~

Linear Regression预测的目标\(Y\)是连续值, Logistic Regression预测的目标是二元变量, 泊松回归预测的是一个整数, 亦即一个计数(Count).

1. 泊松分布

如果一个离散随机变量\(Y\)的概率分布函数(probability mass function)为

$$Pr(Y=k)=\frac{\lambda^ke^{-\lambda}}{k!}$$

 

其中\(\lambda>0, k=0,1,2,...\), 则称\(Y\)服从泊松分布, 示意图如下图所示

poisson

 

泊松分布有以下性质:

  1. \(E(Y)=\lambda\)
  2. \(Var(Y)=\lambda\)
  3. 如果\(Y_1 \sim Poisson(\lambda_1), Y_2 \sim Poisson(\lambda_2)\), 则\(Y=Y_1+Y_2 \sim Poisson(\lambda=\lambda_1+\lambda_2)\)

2. 泊松回归

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值