53. Maximum Subarray

本文详细解析了求解最大子数组和问题的算法,通过动态规划方法实现了O(n)的时间复杂度,提供了完整的C++代码实现,并提及了后续可尝试的分治法解决方案。

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

AC code:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int len = nums.size();
        if (len == 1)
            return nums[0];
        vector<int> dp(len, 0);
        dp[0] = nums[0];
        int maxx = dp[0];
        for (int i = 1; i < len; ++i) {
            dp[i] = nums[i] + (dp[i-1] > 0? dp[i-1] : 0);
            maxx = max(maxx, dp[i]);
        }
        return maxx;
    }
};

Runtime: 4 ms, faster than 100.00% of C++ online submissions for Maximum Subarray

 

转载于:https://www.cnblogs.com/ruruozhenhao/p/9813721.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值