[LeetCode] 674. Longest Continuous Increasing Subsequence_Easy Dynamic Programming

本文介绍了一种解决寻找最长连续递增子数组问题的方法,给出了一段O(n)时间复杂度和O(1)空间复杂度的Python代码实现。通过对输入数组的遍历,并利用动态规划的思想,有效地找到了最长连续递增子数组的长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an unsorted array of integers, find the length of longest continuous increasing subsequence (subarray).

Example 1:

Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3. 
Even though [1,3,5,7] is also an increasing subsequence, it's not a continuous one where 5 and 7 are separated by 4. 

 

Example 2:

Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1. 

 

Note: Length of the array will not exceed 10,000.

 

这个是一个经典的DP问题,  A[i] = A[i-1] + 1 if a[i] > a[i-1] else 1     (i > 0)   , init: A[0] = 1

[LeetCode] 329. Longest Increasing Path in a Matrix_Hard tag: Dynamic Programming, DFS, Memoization的一个前身.

 

 

code

T; O(n)    S; O(1)

class Solution:
    def longestContinuesSubarry(self, nums):
        if not nums: return 0
        n = len(nums)
        dp, ans = [1]*2, 1
        for i in range(1, n):
            if nums[i] > nums[i-1]:
                dp[i%2] = dp[(i - 1) % 2] + 1
            else:
                dp[i%2] = 1
            ans = max(ans, dp[i%2])
        return ans

 

转载于:https://www.cnblogs.com/Johnsonxiong/p/9405149.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值