LeetCode--674. Longest Continuous Increasing Subsequence

本文介绍了一种高效算法来解决寻找给定整数数组中最长连续递增子序列的问题。通过一次遍历,利用计数器记录当前递增子序列的长度,并更新全局最大值。适用于数组长度不超过10,000的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an unsorted array of integers, find the length of longest continuous increasing subsequence (subarray).

Example 1:

Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3. 
Even though [1,3,5,7] is also an increasing subsequence, it's not a continuous one where 5 and 7 are separated by 4. 

Example 2:

Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1. 

Note:Length of the array will not exceed 10,000.


题意:给定一个数组求其最长连续递增子序列的长度。

思路:

1.设置一个计数器cnt(初始化为1)用来表示当前最大连续子序列的长度,每次碰到第i项大于第i-1项,cnt加一,否则cnt置一,最后返回最大值即可。

2.注意数组可能为空,特判即可。

参考代码:

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        int n=nums.size(),cnt=1,mx=1;
        if(n==0) return 0;
        for(int i=1;i<n;++i){
            if(nums[i]>nums[i-1]) 
                ++cnt;
            else cnt=1;
            mx=max(mx,cnt);
        }
        return mx;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值