#动态规划 LeetCode 62 不同路径

本文探讨了在mxn网格中,机器人从左上角到右下角的不同路径计数问题。通过动态规划方法,详细解析了如何计算所有可能路径的数量,并提供了一段Java代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?

例如,上图是一个7 x 3 的网格。有多少可能的路径?

说明:m 和 的值均不超过 100。

示例 1:

输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右

示例 2:

输入: m = 7, n = 3
输出: 28

思路:
  • 自顶向下先用递归思考:函数可以抽象为走到终点(m-1,n-1)的全部走法。而递归为子问题,分别为(m-2, n-1)与(m-1, n-2)两点走出的方法。
  • 状态转移方程:F(m-1,n-1) = F(m-2, n-1)+ F(m-1, n-2)
  • 自底向上思考:F(0,0) = 1 F(1,0) = F(0,0) F(0,1) = F(0,0) F(1,1)= F(0,1)+F(1,0) ...F(m-1,n-1) = F(m-2, n-1)+ F(m-1, n-2)
  • 下边界, 右边界单独处理
  • 迭代即可动态规划求解。



class Solution {
    public int uniquePaths(int m, int n) {
        
        int[][] num = new int[m][n];
        num[m-1][n-1] = 1;
        
        for(int i = m-1 ; i>=0 ; i--)
            for(int j= n-1 ; j>=0 ; j--){
                if(i!=m-1){
                    if(j!= n-1)
                        num[i][j] = num[i][j+1] + num[i+1][j];
                    else
                        num[i][j] = num[i+1][j];
                }
                else{
                    if(j!= n-1)
                        num[i][j] = num[i][j+1];
                }
            }
        
        return num[0][0];
    }
}

 

转载于:https://www.cnblogs.com/rainxbow/p/9702653.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值