HDU-1159 Common Subsequence 最长上升子序列

本文详细解析了动态规划问题中的一个常见错误,并通过对比分析两种不同的代码实现方式,帮助开发者理解动态方程的正确应用。文章还提供了实例代码,以加深读者对动态规划的理解。

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9595    Accepted Submission(s): 3923


Problem Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
 

 

Sample Input
abcfbc abfcab programming contest abcd mnp
 

 

Sample Output
4 2 0
 
 
 
  前面写了一份代码,一直不知到哪里处理错了,后来参考了别人的代码后发现了一个别人都是那样写,但是我却一直没注意的地方,那就是动态的方程在第一个元素的相等的时,dp[0][0] = dp[-1][-1] + 1, 天哪,这肯定就会出错了。在处理时可以选择字符的读取从第一个位置开始,或者把 i 号字符的状态存储到i+1号位置去,这样就从1号开始处理了,判定是就是 s1[i-1] == s1[j-1] ?
  代码如下:
复制代码
 1 #include <cstring>

2 #include <cstdlib>
3 #include <cstdio>
4 #define Max( a, b ) (a) > (b) ? (a) : (b)
5 using namespace std;
6
7 char s1[1005], s2[1005];
8
9 int dp[1005][1005];
10
11 int main()
12 {
13 int len1, len2;
14 while( scanf( "%s %s", s1, s2 ) != EOF )
15 {
16 memset( dp, 0, sizeof(dp) );
17 len1 = strlen( s1 ), len2 = strlen( s2 );
18 for( int i = 1; i <= len1; ++i )
19 {
20 for( int j = 1; j <= len2; ++j )
21 {
22 if( s1[i-1] == s2[j-1] )
23 {
24 dp[i][j] = dp[i-1][j-1] + 1;
25 }
26 else
27 {
28 dp[i][j] = Max ( dp[i-1][j], dp[i][j-1] );
29 }
30 }
31 }
32 printf( "%d\n", dp[len1][len2] );
33 }
34 return 0;
35 }
复制代码

  第二种处理方法:

#include <cstring>
#include <cstdlib>
#include <cstdio>
#define Max( a, b ) (a) > (b) ? (a) : (b)
using namespace std;

char s1[1005], s2[1005];

int dp[1005][1005];

int main()
{
    int len1, len2;
    while( scanf( "%s %s", s1+1, s2+1 ) != EOF )
    {
        memset( dp, 0, sizeof(dp) );
        len1 = strlen( s1+1 ), len2 = strlen( s2+1 );
        for( int i = 1; i <= len1; ++i )
        {
            for( int j = 1; j <= len2; ++j )
            {
                if( s1[i] == s2[j] )
                {
                    dp[i][j] = dp[i-1][j-1] + 1;
                }
                else
                {
                    dp[i][j] = Max ( dp[i-1][j], dp[i][j-1] );
                }
            }
        }
        printf( "%d\n", dp[len1][len2] );
    }

转载于:https://www.cnblogs.com/13224ACMer/p/4393363.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值