POJ 1734:Sightseeing trip

本文介绍了一种利用Floyd算法求解图中最小环路的方法,重点在于如何避免环路中出现重复节点,并通过示例代码详细展示了实现过程。
Sightseeing trip
Time Limit: 1000MS        Memory Limit: 65536K
Total Submissions: 6831        Accepted: 2612        Special Judge
Description

There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route. 

In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.
Input

The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).
Output

There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.
Sample Input

5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20
Sample Output

1 3 5 2
题目

  (PS:其实就是求图上最小环啦)

  芒果君:本来以为自己最短路学的可以来着,结果知道最小环用floyd而不用tarjan时我的内心是崩溃的,然后也打不出来。这道题的巧妙之处在于,求环的过程和floyd一块做而在其之前,使得不会在结果中出现重复节点。最短路无非是加了一句记录中转点;求环的话每次都要重做,首先要清楚它不只是一条最短路,还有一个不在路上的点k将其首尾相连,先记录i,再进行递归找到最短路上更新的所有点,这段代码需要仔细理解。

  感觉这道题不太好想呢?

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cmath>
 4 #include<cstring>
 5 #include<algorithm>
 6 #define inf 1<<29 
 7 using namespace std;
 8 int ans,dis[110][110],road[110][110],ma[110][110],path[110],n,m,cnt; 
 9 int read()
10 {
11     int x=0;
12     char ch=getchar();
13     while(ch<'0'||ch>'9') ch=getchar();
14     while(ch>='0'&&ch<='9'){
15         x=x*10+ch-'0';
16         ch=getchar(); 
17     }
18     return x; 
19 }
20 void init()
21 {
22     ans=inf; 
23     memset(road,0,sizeof(road));
24     memset(ma,0,sizeof(ma)); 
25     for(int i=1;i<=n;++i)
26         for(int j=1;j<=n;++j)
27             dis[i][j]=inf;
28 }
29 void record(int x,int y)
30 {
31     if(road[x][y]){
32         record(x,road[x][y]);
33         record(road[x][y],y); 
34     }
35     else path[++cnt]=y;
36 }
37 int main(){
38     int x,y,t,i,j,k; 
39     while((scanf("%d%d",&n,&m))!=EOF){
40         init(); 
41         for(i=1;i<=m;++i){
42             x=read();y=read();t=read();
43             if(t<dis[x][y]) dis[x][y]=dis[y][x]=t;  
44         }
45         for(i=1;i<=n;++i)
46             for(j=1;j<=n;++j)
47                 ma[i][j]=dis[i][j]; 
48         for(k=1;k<=n;++k){
49             for(i=1;i<k;++i)
50                 for(j=i+1;j<k;++j){
51                     if(ans>dis[i][j]+ma[i][k]+ma[k][j]){
52                         ans=dis[i][j]+ma[i][k]+ma[k][j];
53                         cnt=0;
54                         path[++cnt]=i;
55                         record(i,j); 
56                         path[++cnt]=k; 
57                     }
58                 }
59             for(i=1;i<=n;++i)
60                 for(j=1;j<=n;++j)
61                     if(dis[i][j]>dis[i][k]+dis[k][j]){
62                         dis[i][j]=dis[i][k]+dis[k][j];
63                         road[i][j]=k; 
64                     }
65         }
66         if(ans==inf) printf("No solution.\n");
67         else{
68             for(i=1;i<=cnt;i++) printf("%d ",path[i]); 
69             printf("\n");
70         } 
71     }
72     return 0;
73 }

 

 

转载于:https://www.cnblogs.com/12mango/p/7203441.html

(1)普通用户端(全平台) 音乐播放核心体验: 个性化首页:基于 “听歌历史 + 收藏偏好” 展示 “推荐歌单(每日 30 首)、新歌速递、相似曲风推荐”,支持按 “场景(通勤 / 学习 / 运动)” 切换推荐维度。 播放页功能:支持 “无损音质切换、倍速播放(0.5x-2.0x)、定时关闭、歌词逐句滚动”,提供 “沉浸式全屏模式”(隐藏冗余控件,突出歌词与专辑封面)。 多端同步:自动同步 “播放进度、收藏列表、歌单” 至所有登录设备(如手机暂停后,电脑端打开可继续播放)。 音乐发现与管理: 智能搜索:支持 “歌曲名 / 歌手 / 歌词片段” 搜索,提供 “模糊匹配(如输入‘晴天’联想‘周杰伦 - 晴天’)、热门搜索词推荐”,结果按 “热度 / 匹配度” 排序。 歌单管理:创建 “公开 / 私有 / 加密” 歌单,支持 “批量添加歌曲、拖拽排序、一键分享到社交平台”,系统自动生成 “歌单封面(基于歌曲风格配色)”。 音乐分类浏览:按 “曲风(流行 / 摇滚 / 古典)、语言(国语 / 英语 / 日语)、年代(80 后经典 / 2023 新歌)” 分层浏览,每个分类页展示 “TOP50 榜单”。 社交互动功能: 动态广场:查看 “关注的用户 / 音乐人发布的动态(如‘分享新歌感受’)、好友正在听的歌曲”,支持 “点赞 / 评论 / 转发”,可直接点击动态中的歌曲播放。 听歌排行:个人页展示 “本周听歌 TOP10、累计听歌时长”,平台定期生成 “全球 / 好友榜”(如 “好友中你本周听歌时长排名第 3”)。 音乐圈:加入 “特定曲风圈子(如‘古典音乐爱好者’)”,参与 “话题讨论(如‘你心中最经典的钢琴曲’)、线上歌单共创”。 (2)音乐人端(创作者中心) 作品管理: 音乐上传:支持 “无损音频(FLAC/WAV)+ 歌词文件(LRC)+ 专辑封面” 上传,填写 “歌曲信息
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值