【POJ 1734】Sightseeing trip

本文介绍了一种解决无向图中寻找最短环的问题的方法。通过使用Floyd算法和回溯法结合,有效地找到了从任意点出发并回到该点的最短路径。此外,还提到了使用memset初始化数组为0x3f的小技巧。
Sightseeing trip
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 7980 Accepted: 3009 Special Judge

Description

There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route. 

In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.

Input

The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

Output

There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

Sample Input

5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20

Sample Output

1 3 5 2

其实就是无向图的最小环问题。
本题收获:memset不是只能赋-1和0,也可以赋成0x3f(即63)。也就是说按十六进制进行赋值。但最好不要超过127,否则容易爆掉。
 1 #include <iostream>
 2 #include <cmath>
 3 #include <cstring>
 4 #include <cstdio>
 5 #include <cstdlib>
 6 #include <algorithm>
 7 #include <vector>
 8 #define MAXN 1000
 9 using namespace std;
10 int a[MAXN][MAXN],d[MAXN][MAXN],pos[MAXN][MAXN];
11 int n,m,ans=0x3f3f3f3f;
12 vector<int>path;
13 void get_path(int x,int y)
14 {
15     if(pos[x][y]==0) return ;
16     get_path(x,pos[x][y]);
17     path.push_back(pos[x][y]);
18     get_path(pos[x][y],y);
19 }
20 int main()
21 {
22     scanf("%d%d",&n,&m);
23     memset(a,0x3f,sizeof(a));
24     for(int i=1;i<=n;i++) a[i][i]=0;
25     for(int i=1;i<=m;i++)
26     {
27         int x,y,z;
28         scanf("%d%d%d",&x,&y,&z);
29         a[y][x]=a[x][y]=min(a[x][y],z);  //有重边 
30     }
31     memcpy(d,a,sizeof(a));
32     for(int k=1;k<=n;k++)
33     {
34         for(int i=1;i<k;i++)
35             for(int j=i+1;j<k;j++)
36                 if((long long)d[i][j]+a[j][k]+a[k][i]<ans)  //寻找子环 
37                 {
38                     ans=d[i][j]+a[j][k]+a[k][i];
39                     path.clear();  //找到新的旧的就全部作废 
40                     path.push_back(i);
41                     get_path(i,j);
42                     path.push_back(j);
43                     path.push_back(k);
44                 }
45         for(int i=1;i<=n;i++)
46             for(int j=1;j<=n;j++)
47                 if(d[i][j]>d[i][k]+d[k][j])
48                 {
49                     d[i][j]=d[i][k]+d[k][j];
50                     pos[i][j]=k;  //更新i,j之间的中间点 
51                 }
52     }
53     if(ans==0x3f3f3f3f)
54     {
55         printf("No solution.");
56         return 0;
57     }
58     for(int i=0;i<path.size();i++) printf("%d ",path[i]);
59     return 0;
60 }
poj1734

 



转载于:https://www.cnblogs.com/YXY-1211/p/9468522.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值