hdu_2608_0 or 1_数论

本文解析了HDU 2608题目中的T[n]规律,通过数学分析得出结论,T[n]的奇偶性取决于n是否能表示为某个整数的平方或两个平方数之和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2608

反正我是没找出这个规律的,规律参考的别人的!

/*
分析:假设数n=2^k*p1^s1*p2^s2*p3^s3*...*pi^si;//k,s1...si>=0,p1..pi为n的素因子 
所以T[n]=(2^0+2^1+...+2^k)*(p1^0+p1^1+...+p1^s1)*...*(pi^0+pi^1+...+pi^si);
显然(2^0+2^1+...+2^k)%2=1,所以T[n]是0或1就取决于(p1^0+p1^1+...+p1^s1)*...*(pi^0+pi^1+...+pi^si)
而p1...pi都是奇数(除2之外的素数一定是奇数),所以(pi^0+pi^1+...+pi^si)只要有一个si为奇数(i=1...i) 
则(pi^0+pi^1+...+pi^si)%2=0,则T[n]%2=0//若si为奇数,则pi^si+1为偶数,pi^1+pi^2+...+pi^(si-1)为偶数(偶数个奇数和为偶数)
所以要T[n]%2=1,则所有的si为偶数,则n=2^(k%2)*m^2;//m=2^(k/2)*p1^(s1/2)*p2^(s2/2)*...*pi^(si/2)
所以只要n为某个数的平方或者某个数的平方和则T[n]%2=1,只要统计n的个数即可 
*/
 1 #include<cstdio>
 2 #include<cmath>
 3 int main(){
 4     int t,n;
 5     scanf("%d",&t);
 6     while(t--){
 7         scanf("%d",&n);
 8         printf("%d\n",((int)sqrt(n*1.0)+(int)sqrt(n*1.0/2))%2);
 9     }
10     return 0;
11 }
View Code

 

转载于:https://www.cnblogs.com/bin-gege/p/5696187.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值