i的二次幂求和

博客介绍了\(i^2\)求和公式\(\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}\)的一种新证明方法,通过对\(\sum_{i=1}^n i^3\)进行“扰动”推导得出。还提到该方法有扩展性,可推导\(i^k\)公式,但复杂度为\(k^2\),拉格朗日插值复杂度\(k \log k\)更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

\(i^2\)求和

老祖宗告诉我们\(\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}\)

但是这玩意儿是怎么出来的呢?感觉网上用立方差证明的思路太low了,今天偶然间在Miskcoo大佬的博客中看到了一种脑洞清奇通俗易懂的证明方法

我们要求的是\(S_n = \sum_{i=1}^n i^2\),现在我们对\(C_n = \sum_{i=1}^n i^3\)来进行"扰动"。

首先列一个恒等式

\[\sum_{i=1}^{n+1} i^3 = C_n + (n+1)^3\]

这里有个骚操作是把前面的转化一下

\[\sum_{i=0}^n (i+1)^3 = C_n + (n+1)^3\]

然后就可以推柿子啦。

\[ \begin{aligned} \sum_{i=0}^n i^3 + 3i^2 + 3i + 1 &= C_n + (n+1)^3\\ C_n + 3S_n + 3\frac{n(n+1)}{2} + (n+1)&= C_n + (n+1)^3\\ \end{aligned} \]

\[ \begin{aligned} \Rightarrow S_n &= \frac{2(n+1)^3 - 3n(n+1)-2(n+1)}{6}\\ &=\frac{n(2n + 1)(n+1)}{6} \end{aligned} \]

同时这个方法具有非常强的扩展性,我们也可以推导出\(i^k\)的公式,但是计算起来的复杂度却是\(k^2\)的,感觉还是拉格朗日插值\(k \log k\)好用一些

参考资料

幂和

转载于:https://www.cnblogs.com/zwfymqz/p/10566327.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值