【POJ 3487】 The Stable Marriage Problem (稳定婚姻问题)

本文介绍了一种解决稳定婚姻问题的方法,特别关注male-optimal稳定配对的情形,并提供了一个具体的算法实现示例。
The Stable Marriage Problem
 

Description

The stable marriage problem consists of matching members of two different sets according to the member’s preferences for the other set’s members. The input for our problem consists of:

  • a set M of n males;
  • a set F of n females;
  • for each male and female we have a list of all the members of the opposite gender in order of preference (from the most preferable to the least).

A marriage is a one-to-one mapping between males and females. A marriage is called stable, if there is no pair (mf) such that f ∈ F prefers m ∈ M to her current partner and m prefers f over his current partner. The stable marriage A is called male-optimal if there is no other stable marriage B, where any male matches a female he prefers more than the one assigned in A.

Given preferable lists of males and females, you must find the male-optimal stable marriage.

Input

The first line gives you the number of tests. The first line of each test case contains integer n (0 < n < 27). Next line describes n male and n female names. Male name is a lowercase letter, female name is an upper-case letter. Then go n lines, that describe preferable lists for males. Next n lines describe preferable lists for females.

Output

For each test case find and print the pairs of the stable marriage, which is male-optimal. The pairs in each test case must be printed in lexicographical order of their male names as shown in sample output. Output an empty line between test cases.

Sample Input

2
3
a b c A B C
a:BAC
b:BAC
c:ACB
A:acb
B:bac
C:cab
3
a b c A B C
a:ABC
b:ABC
c:BCA
A:bac
B:acb
C:abc

Sample Output

a A
b B
c C

a B
b A
c C

Source

 
 
【题意】
  自己看
 
【分析】
  怎么感觉稳定婚姻问题都没有其他问法。。。
  做的两题都是一样的。。。
  这题是male-optimal,就练练模版了。。。
 
代码如下:
  1 #include<cstdio>
  2 #include<cstdlib>
  3 #include<cstring>
  4 #include<iostream>
  5 #include<algorithm>
  6 #include<queue>
  7 using namespace std;
  8 #define Maxn 40
  9 
 10 int ml[Maxn][Maxn],rk[Maxn][Maxn];
 11 int fw[Maxn],fh[Maxn],nt[Maxn];
 12 
 13 int n;
 14 // bool pm[Maxn],pf[Maxn];
 15 char s[Maxn];
 16 
 17 queue<int > q;
 18 
 19 void init()
 20 {
 21     scanf("%d",&n);
 22     // memset(pm,0,sizeof(pm));
 23     // memset(pf,,sizeof(pf));
 24     for(int i=1;i<=n;i++)
 25     {
 26         scanf("%s",s);
 27         // pm[s[0]-'a'+1]=1;
 28     }
 29     for(int i=1;i<=n;i++)
 30     {
 31         scanf("%s",s);
 32         // pf[s[0]-'A'+1]=1;
 33     }
 34     while(!q.empty()) q.pop();
 35     memset(fw,0,sizeof(fw));
 36     memset(fh,0,sizeof(fh));
 37     for(int i=1;i<=n;i++)
 38     {
 39         scanf("%s",s);
 40         int x=s[0]-'a'+1;
 41         for(int j=1;j<=n;j++)
 42         {
 43             int y=s[j+1]-'A'+1;
 44             ml[x][j]=y;
 45         }
 46         fw[x]=0;nt[x]=1;
 47         q.push(x);
 48     }
 49     for(int i=1;i<=n;i++)
 50     {
 51         scanf("%s",s);
 52         int x=s[0]-'A'+1;
 53         for(int j=1;j<=n;j++)
 54         {
 55             int y=s[j+1]-'a'+1;
 56             rk[x][y]=j;
 57         }
 58         fh[x]=0;
 59     }
 60 }
 61 
 62 void engage(int x,int y)
 63 {
 64     int z=fh[y];
 65     if(z)
 66     {
 67         fw[z]=0;
 68         q.push(z);
 69     }
 70     fw[x]=y;fh[y]=x;
 71 }
 72 
 73 void ffind()
 74 {
 75     while(!q.empty())
 76     {
 77         int x=q.front();q.pop();
 78         int y=ml[x][nt[x]++];
 79         if(fh[y]==0||rk[y][x]<rk[y][fh[y]])
 80             engage(x,y);
 81         else q.push(x);
 82     }
 83 }
 84 
 85 int main()
 86 {
 87     int T;
 88     scanf("%d",&T);
 89     while(T--)
 90     {
 91         init();
 92         ffind();
 93         for(int i=1;i<=30;i++) if(fw[i])
 94         {
 95             printf("%c %c\n",'a'+i-1,'A'+fw[i]-1);
 96         }
 97         if(T) printf("\n");
 98     }
 99     return 0;
100 }
[POJ3487]

 

这样我还WA了两次,next不记得++,还有最好清零用memset全清了来得干净~~

 

 2016-10-26 20:51:44

转载于:https://www.cnblogs.com/Konjakmoyu/p/6001846.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值