bzoj3890 [Usaco2015 Jan]Meeting Time

本文介绍了一道算法题目,要求找到两条从起点到终点长度相同的最短路径,分别适用于两位速度不同的角色Bessie和Elsie。路径通过两种不同权重计算,利用bitset优化状态存储,实现高效求解。

Description

Bessie and her sister Elsie want to travel from the barn to their favorite field, such that they leave at exactly the same time from the barn, and also arrive at exactly the same time at their favorite field. The farm is a collection of N fields (1 <= N <= 100) numbered 1..N, where field 1 contains the barn and field N is the favorite field. The farm is built on the side of a hill, with field X being higher in elevation than field Y if X < Y. An assortment of M paths connect pairs of fields. However, since each path is rather steep, it can only be followed in a downhill direction. For example, a path connecting field 5 with field 8 could be followed in the 5 -> 8 direction but not the other way, since this would be uphill. Each pair of fields is connected by at most one path, so M <= N(N-1)/2. It might take Bessie and Elsie different amounts of time to follow a path; for example, Bessie might take 10 units of time, and Elsie 20. Moreover, Bessie and Elsie only consume time when traveling on paths between fields -- since they are in a hurry, they always travel through a field in essentially zero time, never waiting around anywhere. Please help determine the shortest amount of time Bessie and Elsie must take in order to reach their favorite field at exactly the same moment.
给出一个n个点m条边的有向无环图,每条边两个边权。 
n<=100,没有重边。 
然后要求两条长度相同且尽量短的路径, 
路径1采用第一种边权,路径2采用第二种边权。 
没有则输出”IMPOSSIBLE”

 

Input

The first input line contains N and M, separated by a space. Each of the following M lines describes a path using four integers A B C D, where A and B (with A < B) are the fields connected by the path, C is the time required for Bessie to follow the path, and D is the time required for Elsie to follow the path. Both C and D are in the range 1..100.

 

Output

A single integer, giving the minimum time required for Bessie and Elsie to travel to their favorite field and arrive at the same moment. If this is impossible, or if there is no way for Bessie or Elsie to reach the favorite field at all, output the word IMPOSSIBLE on a single line.

 

Sample Input

3 3
1 3 1 2
1 2 1 2
2 3 1 2

Sample Output

2

SOLUTION NOTES:

Bessie is twice as fast as Elsie on each path, but if Bessie takes the
path 1->2->3 and Elsie takes the path 1->3 they will arrive at the
same time.
 
f[i][j]、g[i][j]表示用第一种/第二种边权到达i号点,当前费用为j的状态是否存在
这样i是100的,因为边权100所以费用是1w的,转移再100就爆了
但是因为只要存个真假所以直接上bitset
bitset大法好啊
 1 #include<set>
 2 #include<map>
 3 #include<cmath>
 4 #include<ctime>
 5 #include<deque>
 6 #include<queue>
 7 #include<bitset>
 8 #include<cstdio>
 9 #include<cstdlib>
10 #include<cstring>
11 #include<iostream>
12 #include<algorithm>
13 #define LL long long
14 #define inf 0x7fffffff
15 #define pa pair<int,int>
16 #define pi 3.1415926535897932384626433832795028841971
17 using namespace std;
18 inline LL read()
19 {
20     LL x=0,f=1;char ch=getchar();
21     while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
22     while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
23     return x*f;
24 }
25 bitset <10005> f[110];
26 bitset <10005> g[110];
27 bool mrk[110][110];
28 int ga[110][110];
29 int gb[110][110];
30 int n,m;
31 int main()
32 {
33     n=read();m=read();
34     for (int i=1;i<=m;i++)
35     {
36         int x=read(),y=read();
37         mrk[x][y]=1;
38         ga[x][y]=read();gb[x][y]=read();
39     }
40     f[1][0]=1;g[1][0]=1;
41     for (int i=2;i<=n;i++)
42         for (int j=1;j<i;j++)
43         if (mrk[j][i])
44         {
45             int x=ga[j][i],y=gb[j][i];
46             f[i]|=(f[j]<<x);
47             g[i]|=(g[j]<<y);
48         }
49     for (int i=1;i<=10000;i++)
50     {
51         if (f[n][i]&&g[n][i])
52         {
53             printf("%d\n",i);
54             return 0;
55         }
56     }
57     printf("IMPOSSIBLE\n");
58     return 0;
59 }
bzoj3890

 

转载于:https://www.cnblogs.com/zhber/p/4845198.html

好的,这是一道经典的单调栈问题。题目描述如下: 有 $n$ 个湖,第 $i$ 个湖有一个高度 $h_i$。现在要在这些湖之间挖一些沟渠,使得相邻的湖之间的高度差不超过 $d$。请问最少需要挖多少个沟渠。 这是一道单调栈的典型应用题。我们可以从左到右遍历湖的高度,同时使用一个单调栈来维护之前所有湖的高度。具体来说,我们维护一个单调递增的栈,栈中存储的是湖的下标。假设当前遍历到第 $i$ 个湖,我们需要在之前的湖中找到一个高度最接近 $h_i$ 且高度不超过 $h_i-d$ 的湖,然后从这个湖到第 $i$ 个湖之间挖一条沟渠。具体的实现可以参考下面的代码: ```c++ #include <cstdio> #include <stack> using namespace std; const int N = 100010; int n, d; int h[N]; stack<int> stk; int main() { scanf("%d%d", &n, &d); for (int i = 1; i <= n; i++) scanf("%d", &h[i]); int ans = 0; for (int i = 1; i <= n; i++) { while (!stk.empty() && h[stk.top()] <= h[i] - d) stk.pop(); if (!stk.empty()) ans++; stk.push(i); } printf("%d\n", ans); return 0; } ``` 这里的关键在于,当我们遍历到第 $i$ 个湖时,所有比 $h_i-d$ 小的湖都可以被舍弃,因为它们不可能成为第 $i$ 个湖的前驱。因此,我们可以不断地从栈顶弹出比 $h_i-d$ 小的湖,直到栈顶的湖高度大于 $h_i-d$,然后将 $i$ 入栈。这样,栈中存储的就是当前 $h_i$ 左边所有高度不超过 $h_i-d$ 的湖,栈顶元素就是最靠近 $h_i$ 且高度不超过 $h_i-d$ 的湖。如果栈不为空,说明找到了一个前驱湖,答案加一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值