Metropolis Hasting算法

本文探讨了Metropolis-Hastings (MH) 算法的应用,这是一种重要的MCMC技术,用于从复杂概率分布中抽样。通过具体实例展示了如何调整转移参数以优化模拟效果,并对比了inverse sampling的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Metropolis Hasting Algorithm:

 

MH算法也是一种基于模拟的MCMC技术,一个很重要的应用是从给定的概率分布中抽样。主要原理是构造了一个精妙的Markov链,使得该链的稳态是你给定的概率密度。它的好处,不用多说,自然是可以对付数学形式复杂的概率密度。有人说,单维的MH算法配上Gibbs Sampler几乎是“无敌”了。

 

今天试验的过程中发现,MH算法想用好也还不简单,里面的转移参数设定就不是很好弄。即使用最简单的高斯漂移项,方差的确定也是个头疼的问题,需要不同问题不同对待,多试验几次。当然你也可以始终选择“理想”参数。

 

还是拿上次的混合高斯分布来做模拟,模拟次数为500000次的时候,概率分布逼近的程度如下图。虽然几个明显的"峰"已经出来了,但是数值上还是有很大差异的。估计是我的漂移方差没有选好。感觉还是inverse sampling好用,迭代次数不用很多,就可以达到相当的逼近程度。

 

 

试了一下MH算法,2011011611260641.jpg

 

 

 

R Code:

p=function(x,u1,sig1,u2,sig2){
(1/3)*(1/(sqrt(2*pi)*15)*exp(-0.5*(x-70)^2/15^2)+1/(sqrt(2*pi)*11)*exp(-0.5*(x+80)^2/11^2)+1/(sqrt(2*pi)*sig1)*exp(-0.5*(x-u1)^2/sig1^2)+1/(sqrt(2*pi)*sig2)*exp(-0.5*(x-u2)^2/sig2^2))
}


MH=function(x0,n){
x=NULL
x[1] = x0
for (i in 1:n){
  x_can= x[i]+rnorm(1,0,3.25)
  d= p(x_can,10,30,-10,10)/p(x[i],10,30,-10,10)
  alpha= min(1,d)
  u=runif(1,0,1)
    if (u<alpha){
    x[i+1]=x_can}
    else{
      x[i+1]=x[i]
     }
   if (round(i/100)==i/100) print(i)
}
x
}
z=MH(10,99999)
z=z[-10000]
a=seq(-100,100,0.2)

plot(density(z),col=1,main='Estimated Density',ylim=c(0,0.02),lty=1)
points(a, p(a,10,30,-10,10),pch='.',col=2,lty=2)
legend(60,0.02,c("True","Sim (MH)"),col=c(1,2),lty=c(1,2))

转载于:https://www.cnblogs.com/juggernaunt/archive/2011/01/16/1936609.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值