买不到的数目---枚举,扩展欧几里得

本文探讨了小明糖果店的糖果组合问题,通过两种不同数量的糖果包装,寻找最大不能组合出的糖果数量。文章提供了两种解决方案,一种是通过暴力枚举所有可能的组合,另一种是利用数学结论直接计算结果。同时,文中还讨论了互质条件下的最大不可组合数,并给出了相应的定理和证明。

小明开了一家糖果店。他别出心裁:把水果糖包成4颗一包和7颗一包的两种。

糖果不能拆包卖。 小朋友来买糖的时候,他就用这两种包装来组合。当然有些糖果数目是无法组合出来的,比如要买 10 颗糖。

你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17。大

于17的任何数字都可以用4和7组合出来。 本题的要求就是在已知两个包装的数量时,求最大不能组合出的数字。

分析:这道题可以直接暴力,枚举

 1 #include<iostream>
 2 #include<set>
 3 using namespace std;
 4 set<int> ss;
 5 
 6 int main(int argc, char const *argv[])
 7 {
 8     int a,b;
 9     cin>>a>>b;
10     for( int i=0; i*a<=a*b; i++ ){/*枚举,上届不会比a*b大*/
11         for( int j=0; j*b+i*a<=a*b; j++ ){
12             ss.insert(i*a+j*b);
13         }
14     }
15     for(int i=a*b; i>=0; i-- ){
16         if(ss.find(i)==ss.end()){
17             cout<<i<<endl;
18             break;
19         }
20     }
21     return 0;
22 }

另一种做法就是利用数学结论:

a,b互质,则ax+by不能取到的最大的就是ab-a-b...

先证明一下,,,

a或者b是1的情况下容易证明.
以下情况都是a>1且b>1的情况.
首先证明ab-a-b不能表示成ax+by
假设ab-a-b=ax+by,那么ab=am+bn (m,n都大于等于1)
左边是a的倍数,右边am是a的倍数,那么要求bn也要是a的倍数
b不是a的倍数,只能要求n是a的倍数,这样的话,bn=bn'a>=ba
那么am=ab-bn所以am1矛盾.
接着证明ab-a-b+i能表示成ax+by(i>0)
因为ab互质,最大公约数就是1,根据辗转相减的方法知ma+nb=1,
不妨假设m>0,n1(m=0意味着nb=1不可能的),所以ab-a-b+i(ma+nb)=(im-1)a+(a+in-1)b
im-1>0,现在只要证明a+in-1>=0,因为ima+inb=i
如果,|in|>ja其中j>0,那么ima=i+|in|b>jab,所以im>jb
所以ima+inb=(im-jb)a-(|in|-ja)b=i,说明|in|>ja时,我们就能调整im,in使得|in|

很显然,题目中没有说明两个数字是互质,如果是2和4 ,通过程序得出的结果是2。

这个结果显然是错误的。但是很明显oj并没有设置这样的数。。。

 1 #include<iostream>
 2 using namespace std;
 3 
 4 int main(int argc, char const *argv[])
 5 {
 6     int a,b;
 7     cin>>a>>b;
 8     cout<<a*b-a-b<<endl;
 9     return 0;
10 }

这里又有一条定理:当gcd(a,b) == 1 时(a和b互质),当c>a*b-a-b时,方程ax+by = c有非负解。

所以最大不能组合出的数目就是 a*b-a-b 。这里假设大家都知道这条定理,当然不知道也没关系,至少现在你知道了。。。

转载于:https://www.cnblogs.com/Bravewtz/p/10456834.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值